Advertisement

Ni0.36Al0.10Cu0.30Fe0.24 Metallic Inert Anode for the Electrochemical Production of Fe-Ni Alloy in Molten K2CO3-Na2CO3

  • Donghua Tian
  • Mingyong Wang
  • Yanping Zhou
  • Handong Jiao
  • Xuefeng She
  • Jiusan Xiao
  • Shuqiang Jiao
Article
  • 29 Downloads

Abstract

In this paper, a Ni0.36Al0.10Cu0.30Fe0.24 metallic inert anode was proposed and the electrochemical behaviors were studied in molten K2CO3-Na2CO3 at 1023 K by polarization curves and Tafel plots. The results indicated that Ni0.36Al0.10Cu0.30Fe0.24 alloy was stable in carbonate due to the formation of a passivation film on the surface. The film was mainly composed of NiFe2O4 and Al2O3 with a dense structure, which inhibited further corrosion of anode. Moreover, oxygen gas and Fe-Ni alloy have been successfully generated through electrolysis with NiO-Fe2O3 pellet as cathode and Ni0.36Al0.10Cu0.30Fe0.24 alloy as anode under a potential of 1.9 V for 24 hours. Ni0.36Al0.10Cu0.30Fe0.24 alloy exhibited bright prospect as a potential candidate of inert anode for green metallurgical process.

Notes

Acknowledgments

The work was supported by the National Natural Science Foundation of China (51725401, 51474200) and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    D. Sadoway, JOM., 2001, vol. 25, pp.34-35.CrossRefGoogle Scholar
  2. 2.
    A. Cox, and D. Fray, J. Appl. Electrochem., 2008, vol. 38, pp.1401-07.CrossRefGoogle Scholar
  3. 3.
    A. Cox, and D. Fray, Ironmak. Steelmak., 2008, vol. 35, pp. 561-66.CrossRefGoogle Scholar
  4. 4.
    G. Li, D. Wang, and Z. Chen, J. Mater. Sci. Technol., 2009, vol. 25, pp. 767-71.Google Scholar
  5. 5.
    S. Licht, and B. Wang, Chem. Commun., 2010, vol. 46, pp. 7004-06.CrossRefGoogle Scholar
  6. 6.
    S. Licht, H. Wu, Z. Zhang, and H. Ayub, Chem. Commun., 2011, vol. 47, pp. 3081-83.CrossRefGoogle Scholar
  7. 7.
    S. Wang, G. Haarberg, and E. Kvalheim, J. Iron. Steel Res. Int., 2008, vol. 15, pp. 48-51.CrossRefGoogle Scholar
  8. 8.
    D. Wang, A. Gmitter, and D. Sadoway, J. Electrochem. Soc., 2011, vol. 158, E51-E54.CrossRefGoogle Scholar
  9. 9.
    S. Jiao, and D. Fray,Metall Mater Trans B., 2010, vol. 41, pp. 74-79.CrossRefGoogle Scholar
  10. 10.
    H. Yin, D. Tang, H. Zhu, Y. Zhang, and D. Wang, Electrochem. Commun., 2011, vol. 13, 1521-24.CrossRefGoogle Scholar
  11. 11.
    D. Tang, H. Yin, X. Cheng, W. Xiao, D. Wang, Int. J. Hydrogen energy, 2016, vol. 41, 18966-18705.Google Scholar
  12. 12.
    H. Yin, X. Mao, D. Tang, W. Xiao, L. Xing, H. Zhu, D. Wang, and D. Sadoway, Energy & Environ Sci., 2013, vol. 6, pp. 1538-45.CrossRefGoogle Scholar
  13. 13.
    L. Hu, Y. Song, S. Jiao, Y. Liu, J. Ge, H. Jiao, J. Zhu, J. Wang, H. Zhu, and D. Fray, ChemSusChem., 2016, vol. 9, pp. 588-94CrossRefGoogle Scholar
  14. 14.
    B. Deng, X. Mao, W. Xiao, and D. Wang, J. Mater. Chem. A., 2017, vol. 5, pp. 12822-27.CrossRefGoogle Scholar
  15. 15.
    L. Hu, Y. Song, J. Ge, J. Zhu, Z. Han, and S. Jiao, J. Mater. Chem. A., 2017, vol. 5, pp. 6219-25.CrossRefGoogle Scholar
  16. 16.
    G. Haarberg, E. Kvalheim, and A. Martinèz. J. Electrochem. Soc., 2014, vol. 58, pp.29-34.Google Scholar
  17. 17.
    H. Yin, L. Gao, H. Zhu, X. Mao, F. Gan, and D. Wang. Electrochim. Acta., 2011, vol. 56, pp. 3296-3302.CrossRefGoogle Scholar
  18. 18.
    Z. Shi, J. Xu, Z. Qiu, B. Gao, and Z. Wang, JOM, 2009, vol. 9, pp. 63-65.Google Scholar
  19. 19.
    P. Zarrabian, M. Kalantar, and S. Ghasemi, J. Mater. Eng. Perform., 2014, vol. 23, pp. 1656-64.CrossRefGoogle Scholar
  20. 20.
    R. Haugsrud, Oxid Met., 1999, vol. 52, pp. 427-45.CrossRefGoogle Scholar
  21. 21.
    X. Ma, Y. He, and D. Wang, Cor. Sci., 2011, vol. 53, pp. 1009-17.CrossRefGoogle Scholar
  22. 22.
    K. Du, K. Zheng, Z. Chen, H. Zhu, F. Gan, and D. Wang, Electrochim. Acta., 2017, vol. 245, pp. 402-08.CrossRefGoogle Scholar
  23. 23.
    V. Kovrov, N. Shurov, A. Khramov, and Y. Zaikov, Russ. J. Non-Ferr. Met., 2009, vol. 50, pp. 492-99.CrossRefGoogle Scholar
  24. 24.
    R. Tamasgavabari, K. Fafarzadeh, Anti-Corros. Methods Mater., 2015, 62, pp. 1-6.CrossRefGoogle Scholar
  25. 25.
    R.Tamasgavabari, K. Jafarzadeh, M. Madanipoor, and H. Badri, Corros. Eng. Sci. Techn., 2014, vol. 49, pp.372-77.CrossRefGoogle Scholar
  26. 26.
    M. Alzamamni, and K. Jafarzadeh., Oxid Met., 2018, vol. 89, pp. 623-40.CrossRefGoogle Scholar
  27. 27.
    M. Biesinger, B. Payne, A. Grosvenor, L. Lau, A. Gerson, and R. Smart., Appl. Surf. Sci., 2011, vol. 257, pp. 2717-30CrossRefGoogle Scholar
  28. 28.
    B. Payne, M. Biesinger, and N. McIntyre, J. Electron Spectrosc, 2011, vol. 184, pp. 29-37.CrossRefGoogle Scholar
  29. 29.
    B. Payne, A. Grosvenor, M. Biesinger, B. Kobe, and N. McIntyre, Surf. Interfece Anal., 2007, vol. 39, pp. 582-92.CrossRefGoogle Scholar
  30. 30.
    A. Pratt, I. Muir, and H. Nesbitt, Geochim. Et Cosmochim. Acta, 1994, vol. 58, pp. 827-41.CrossRefGoogle Scholar
  31. 31.
    E. Paparazzo., J. Electron Spectrosc., 1987, vol. 43, pp. 97-112.Google Scholar
  32. 32.
    M. Biesinger, L. Lau, A. Gerson, and R. Smart, Appl. Surf. Sci., 2010, vol. 257, pp. 887-98.CrossRefGoogle Scholar
  33. 33.
    S. Wang, J. Ge, Y. Hu, H. Zhu, and S. Jiao, Electrochim. Acta., 2013, vol. 87, pp. 148-52.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Donghua Tian
    • 1
  • Mingyong Wang
    • 1
  • Yanping Zhou
    • 2
  • Handong Jiao
    • 1
  • Xuefeng She
    • 1
  • Jiusan Xiao
    • 1
  • Shuqiang Jiao
    • 1
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations