Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 6, pp 3086–3096 | Cite as

Effect of Iron Phase Evolution on Copper Separation from Slag Via Coal-Based Reduction

  • Shiwei Zhou
  • Yonggang Wei
  • Bo Li
  • Hua Wang
Article
  • 165 Downloads

Abstract

Copper slag, a by-product of copper pyrometallurgy, inevitably contains a certain amount of copper. Oxygen-enriched smelting technologies increase the copper content in slag indirectly because of the production of higher-grade matte. The effect of iron phase evolution on the copper content in slag during the slag cleaning process in an electric furnace was investigated using the method of combining theory with experiments. Based on the analysis, the main factors that impede the separation of slag and copper/matte were determined. Subsequently, the properties of slag were analyzed after decreasing the magnetite content within the slag. The experimental results showed that decreases in magnetite content were beneficial for the separation of copper and slag because of the decrease of slag viscosity. Nevertheless, Cu-Fe alloys formed when magnetite was completely reduced to metallic iron, and the foaming slag was formed at 1250 °C. Furthermore, the distribution of copper in the reduced slags was studied in detail.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (U1602272 and 51664039) and the Analysis and Testing Foundation of Kunming University of Science and Technology (2017P20161102004).

References

  1. 1.
    1. I.F.F. Neto, C. A. Sousa, M.S.C.A. Brito, A. M. Futuro, and H.M.V.M. Soares, Sep. Purif. Technol, 2016, vol. 164, pp. 19–27.CrossRefGoogle Scholar
  2. 2.
    2. B. Das, B.K. Mishra, S. Angadi, S.K. Pradhan, S. Prakash, and J. Mohanty, Waste Management & Research the Journal of the International Solid Wastes & Public Cleansing Association Iswa, 2010, vol. 28, pp. 561-567.CrossRefGoogle Scholar
  3. 3.
    M.E. Schlesinger, M.J. King, K.C. Sole, and W.G. Davenport, Extractive Metallurgy of Copper 5th ed, Elsevier, Oxford, 2011.CrossRefGoogle Scholar
  4. 4.
    4. R. Sridhar, J.M. Toguri, and S. Simeonov, Metall. Mater. Trans. B, 1997, vol. 28B, pp. 191-200.CrossRefGoogle Scholar
  5. 5.
    5. R. Sharma, and R.A. Khan, J. Clean. Prod, 2017, vol. 151, pp. 179-192.CrossRefGoogle Scholar
  6. 6.
    6. A. Rusen, A.Geveci, Y. A. Topkaya, and B. Derin, JOM, 2016, vol. 68, pp.2323-2331.CrossRefGoogle Scholar
  7. 7.
    Jones, M.J., Advances in extractive metallurgy and refining, IMM, London, 1972.Google Scholar
  8. 8.
    8. P. Spira, N. J. Themelis, JOM. 1969, vol. 21, pp. 35-42.CrossRefGoogle Scholar
  9. 9.
    9. J.C. Yannopoulos, Can. Metall. Q., 1971, vol. 10, pp. 291-307.CrossRefGoogle Scholar
  10. 10.
    10. J.M. Toguri, N.J. Themelis, and P.H. Jennings, Can. Metall. Q., 1964, vol. 3, pp. 197-220.CrossRefGoogle Scholar
  11. 11.
    M.E. Schlesinger, M.J. King, A.W. Davenport, and K.C. Sole, Extractive Metallurgy of Copper, 5th ed. Elsevier, New York, 2011.CrossRefGoogle Scholar
  12. 12.
    12. H. Jalkanen, J. Vehviläinen, and J. Poijärvi, Scand. J. Metall., 2003, vol. 32, pp. 65-70.CrossRefGoogle Scholar
  13. 13.
    13. N. Cardona, P. Coursol, P. J. Mackey, and R. Parra, Can. Metall. Q., 2011, vol. 50, pp. 318-29.CrossRefGoogle Scholar
  14. 14.
    14. M. Kucharski, Archiwum Hutnictwa, 1987, vol. 32, pp. 307-23.Google Scholar
  15. 15.
    15. H.P. Rajcevic and W.R. Opie, JOM, 1982, vol. 34, pp. 54-56.CrossRefGoogle Scholar
  16. 16.
    A. Moreno, G. Sánchez, A. Warczok, and G. Riveros, Proc. Conf. Copper 2003, London, Metallurgical Societ of CIM, 2003, vol. IV, pp. 475–92.Google Scholar
  17. 17.
    17. A. Warczok, G. Riveros, P. Echeverrã, C.M. Díaz, H. Schwarze and G. Sánchez, Can. Metall. Q., 2013, vol. 41, pp. 465-473.CrossRefGoogle Scholar
  18. 18.
    V. Montenegro, T. Fujisawa, A. Warczok, and G. Riveros, Metallurgical and Materials Processing: Principles and Technologies, 2003, High-Temperature Metal Production, vol 2, pp. 199–09.Google Scholar
  19. 19.
    A. Warczok, G. Riveros, and V. Montenegro, Proc. 5th Int. Conf. Copper 2003, Santiago, Chile, November 30–December 3, 2003, pp. 1–17.Google Scholar
  20. 20.
    20. A. Warczok, T. A. Utigard, Metall. Mater. Trans. B., 1995, vol. 26, pp. 1165-1173.CrossRefGoogle Scholar
  21. 21.
    21. M. S. Bafghi, ISIJ Int., 2007, vol. 32, pp. 1084-1090.CrossRefGoogle Scholar
  22. 22.
    22. A. Mitrašinović, JOM, 2017, vol. 69, pp. 1-6.CrossRefGoogle Scholar
  23. 23.
    23. A. Warczok, T. A. Utigard, Can. Metall. Q., 2013, vol. 37, pp. 27-39.CrossRefGoogle Scholar
  24. 24.
    24. J.H. Heo, Y, Chung, and J.H. Park, J. Clean. Prod., 2016, vol. 137, pp. 777-787.CrossRefGoogle Scholar
  25. 25.
    A.A. Lykasov, G.M. Ryss, D.G. Sharafutdinov, and A.Y. Pogodin, Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metall. 2016, vol. 59, pp. 597-607.CrossRefGoogle Scholar
  26. 26.
    26. D. Busolic, F. Parada, R. Parra, M. Sanchez, J. Palacios, and M. Hino, Miner. Process. Extr. Metall., 2011, vol. 120, pp. 32-36.Google Scholar
  27. 27.
    27. H.F. Yang, L.L. Jing, and C.G. Dang, Chin. J. Nonferrous. Met., 2011, vol. 21, pp. 1165-1170.Google Scholar
  28. 28.
    28. R.W. Ruddle, The physical chemistry of copper smelting, IMM, London, 1953.Google Scholar
  29. 29.
    29. C.P Liu, Nonferrous Metals: Extractive Metallurgy, 1975, vol. 8, pp. 36-45. (In Chinese)Google Scholar
  30. 30.
    L. Bodnar, S. Cempa, K. Tomasek, and L. Bobok, Chem. Pap. 1978, vol. 32(6), pp. 798–809.Google Scholar
  31. 31.
    31. J.O. Bockris, and D.C. Lowe, Proc. R. Soc. A., 1954, vol. 226, pp. 423-435.CrossRefGoogle Scholar
  32. 32.
    32. G.H. Kaiura, J.M. Toguri, and G. Marchant, Can. Metall. Q., 2013, vol. 16, pp. 156-160.CrossRefGoogle Scholar
  33. 33.
    P. Taskinen, K. Seppã¤Lã¤, J. Laulumaa, and J. Poijã¤Rvi, Min. Proc. Ext. Met., 1997, vol. 110, pp. 94–100.Google Scholar
  34. 34.
    34. J. Matousek, JOM, 2012, vol. 64, pp. 1314-1320.CrossRefGoogle Scholar
  35. 35.
    35. S.W. Ip, and J.M. Toguri, Metall. Trans. B., 1992, vol. 23, pp. 303-311.CrossRefGoogle Scholar
  36. 36.
    36. P.K. Iwamasa, and R.J. Fruehan, ISIJ Int., 1996, vol. 36, pp. 1319-1327.CrossRefGoogle Scholar
  37. 37.
    37. N. Cardona, P. Coursol, J. Vargas, and R. Parra, Can. Metall. Q., 2013, vol. 50, pp. 330-340.CrossRefGoogle Scholar
  38. 38.
    38. S.A. Degterov, and A.D. Pelton, Metall. Mater. Trans. B., 1999, vol. 30B, pp. 1033-1044.CrossRefGoogle Scholar
  39. 39.
    39. D.C. Lynch, S. Akagi, and W.G. Davenport, Metall. Trans. B., 1991, vol. 22, pp. 677-688.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations