Skip to main content
Log in

The Influence of Sulfur Content on the Carbothermal Reduction of SiMn Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This article examines the influence of sulfur content on the carbothermal reduction of MnO and SiO2 in SiMn slag by carbon black. The sulfur content in the synthetic slag is varied from 0 to 1.0 wt pct. Reduction experiments are carried out in a thermogravimetric (TG) furnace at 1873 K (1600 °C) under CO atmospheric pressure. The reduction rates are measured based on the weight loss data, and the samples are characterized by SEM/EDS and ICP-MS. The wetting property of slag on carbon black is also studied with the sessile drop technique. The reaction rate on the slag-metal interface is one order higher than on the slag-carbon interface. A small amount of sulfur (0.2 and 0.44 wt pct) accelerates the slag-metal reaction rate constant by 2.2 and 4.2 times, respectively. Therefore, small amounts of sulfur in slag significantly improve the reduction of MnO and SiO2. The MnS precipitation phenomenon during slag cooling is studied by FactSage simulation and experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S.E. Olsen, M. Tangstad and T. Lindstad: Production of Manganese Ferroalloys, Tapir Academic Press, Trondheim, Norway, 2007.

    Google Scholar 

  2. O. Ostrovski and D. Swinbourne: Steel. Res. Int., 2013, vol. 84, pp. 680–6.

    Article  Google Scholar 

  3. T. Coetsee, C. Reinke, J. Nell and P.C. Pistorius: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2534–52.

    Article  Google Scholar 

  4. J.H. Stansbie: Iron and Steel, Read Books, Worcestershire, UK, 2007, pp. 351–2.

    Google Scholar 

  5. M. Tangstad: The High Carbon Ferromanganese Process–Coke Bed Relations, PhD Thesis, Norwegian Institute of Technology, Trondheim, Norway, 1996.

  6. K. Xu, G. Jiang, W. Ding, L. Gu, S. Guo and B. Zhao: ISIJ Int., 1993, vol. 33, pp. 104–8.

    Article  Google Scholar 

  7. J. Safarian and L. Kolbeinsen: Metall. Mater. Trans. B, 2015, vol. 46: 125–34.

    Article  Google Scholar 

  8. T.A. Skjervheim: Kinetics and mechanisms for transfer of manganese and silicon from melten oxide to liquid manganese metal, PhD Thesis, Norwegian Institute of Technology, Trondheim, Norway, 1994.

  9. J.F. White, J. Lee, O. Hessling and B. Glaser: Metall. Mater. Trans. B, 2017, vol. 48: 506–15.

    Article  Google Scholar 

  10. J.F. White, J. Lee, O. Hessling, and B. Glaser: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts, Seattle, USA, 2016, pp. 565–72.

  11. H. Sun, K. Mori and R.D. Pehlke: Metall. Trans. B, 1993, vol. 24, pp. 113–20.

    Article  Google Scholar 

  12. I. Egry, E. Ricci, R. Novakovic and S. Ozawa: Adv. Colloid. Interfac., 2010, vol. 159, pp. 198–212.

    Article  Google Scholar 

  13. T. Dubberstein, H. Heller, J. Klostermann, R. Schwarze and J. Brillo: J. Mater. Sci., 2015, vol. 50, pp. 7227–37.

    Article  Google Scholar 

  14. T. Dubberstein, A. Jahn, M. Lange, H. Heller and P.R. Scheller: Steel. Res. Int., 2014, vol. 85, pp. 1220–8.

    Article  Google Scholar 

  15. T. Zienert, S. Dudczig, O. Fabrichnaya and C.G. Aneziris: Ceram. Int., 2015, vol. 41, pp. 2089–98.

    Article  Google Scholar 

  16. K. Xu, W. Ding, and G. Jiang: Shenyang International Symposium on Smelting Reduction, Shengyan, China, 1986, pp. 191–206.

  17. T.A. Skjervheim and S.E. Olsen: Proceedings of the 7th International Congress on Ferroalloys (INFACON VII), Trondheim, Norway, 1995, pp. 631–40.

  18. T.A. Larssen: Reduction of MnO and SiO 2 from Assmang and Comilog based Slags, Master’s thesis, Norwegian University of Science & Technology, Trondheim, Norway, 2017.

    Google Scholar 

  19. P.P. Kim, M. Tangstad: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1185–1196.

    Article  Google Scholar 

  20. R. Kawamoto: Effect of Sulphur Addition on the Reduction Mechanism of Synthetic Siliconmanganese Ore, Norwegian University of Science & Technology Report, 2017.

  21. M.M. Yastreboff: Mechanisms of Carbothermic Reduction of Manganese Oxide from Manganese Ore and Ferromanganese Slag, PhD Thesis, The University of New South Wales, Sydney, Australia, 2000, pp. 170–72.

  22. P. Kim, T.A. Larssen, M. Tangstad, and R. Kawamoto: Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies, Part of the series The Minerals, Metals & Materials Series, San Diego, USA, 2017, pp. 475–83.

  23. J. Safarian, G. Tranell, L. Kolbeinsen, M. Tangstad, S. Gaal and J. Kaczorowski: Metall. Mater. Trans. B, 2008, vol. 39, pp. 702–12.

    Article  Google Scholar 

  24. Y. Park and D.J. Min: ISIJ Int., 2016, vol. 56, pp. 520–6.

    Article  Google Scholar 

  25. J.S. Oh and J. Lee: J. Mater. Sci., 2016, vol. 51, pp. 1813–9.

    Article  Google Scholar 

  26. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I-H. Jung, Y-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer and M-A. Van Ende: Calphad J., 2016, vol. 55, pp. 1–19.

    Article  Google Scholar 

  27. O. Ostrovski, S.E. Olsen, M. Tangstad and M. Yastreboff: Can. Metall. Quart., 2002, vol. 41, pp. 309–18.

    Article  Google Scholar 

  28. H. Olsen: A Theoretical Study on the Reaction Rates in the SiMn Production Process, Master’s thesis, Norwegian University of Science & Technology, Trondheim, Norway, 2016.

  29. T. Shimoo, S. Ando and H. Kimura: J. Jpn. I. Met., 1984, vol. 48, pp. 922–9.

    Article  Google Scholar 

  30. A. Blackman and L. Gahan: Aylward and Findlay’s SI Chemical Data, 7th Edition, Wiley, New Jersey, USA, 2014.

    Google Scholar 

  31. M. Yastreboff, O. Ostrovski and S. Ganguly: ISIJ Int., 2003, vol.43, pp. 161–5.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported under the Norwegian Research Council (GasFerroSil, Project No. 224950). The authors would also like to thank Dr. Kai Tang from SINTEF Materials and Chemistry for his assistance with thermodynamic calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Additional information

Manuscript submitted February 13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tangstad, M. The Influence of Sulfur Content on the Carbothermal Reduction of SiMn Slag. Metall Mater Trans B 50, 136–149 (2019). https://doi.org/10.1007/s11663-018-1373-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1373-x

Keywords

Navigation