Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2794–2808 | Cite as

Yttria-Stabilized Zirconia Aided Electrochemical Investigation on Ferric Ions in Mixed Molten Calcium and Sodium Chlorides

  • Hongbo Hu
  • Yunming GaoEmail author
  • Yigui Lao
  • Qingwei Qin
  • Guangqiang Li
  • George Z. Chen


Electrolytic reduction of dissolved iron oxide to metal iron in molten salts with an inert anode is an alternative short route for steelmaking without CO2 emissions. A novel and simple integrated yttria-stabilized zirconia (YSZ) cell was constructed from a YSZ tube with a closed end. The YSZ tube played multiple functions, including the container for the molten salts, the solid electrolyte membrane in the O2−|YSZ|Pt|O2 (air) reference electrode (RE), and the solid electrolyte membrane between the working and counter electrodes (WE and CE). Electrochemical behavior of ferric ions (Fe3+) that were formed by dissolution of 0.5 wt pct Fe2O3 in the molten CaCl2-NaCl eutectic mixture was investigated on a Pt WE at 1273 K by various electrochemical techniques including cyclic voltammetry, linear scan voltammetry, square wave voltammetry, chronopotentiometry, chronoamperometry, and potentiostatic electrolysis. Analysis of the mechanism of electrode reactions was further assisted by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Some electrochemical parameters were obtained, including the number of exchanged electrons and the diffusion coefficient of ferric ions in the mixed molten salts. The results from various electrochemical techniques are in good agreement with each other, and show that the electrochemical reduction of Fe3+ to Fe in the molten salt mixture could be a single three-electron transfer step and diffusion-controlled reaction that was also possibly reversible. This work may form the foundation for extraction of iron and alloys from molten salts and also provide a stable O2−|YSZ|Pt|O2 (air) RE with wide applicability for investigation on electrochemical properties of other electroactive metal oxides in molten salts.



The authors acknowledge funding provided by the National Natural Science Foundation of China (Grant No. 51174148) and the Key Program of Joint Funds of the National Natural Science Foundation of China and the Government of Liaoning Province (Grant No. U1508214).


  1. 1.
    Y. Castrillejo, A. M. Martinez, M. Vega and P. S. Batanero: J. Appl. Electrochem., 1996, vol. 26, pp. 1279-85.CrossRefGoogle Scholar
  2. 2.
    A. Lugovskoy, M. Zinigrad, D. Aurbach and Z. Unger: Electrochim. Acta, 2009, vol. 54, pp. 1904-08.CrossRefGoogle Scholar
  3. 3.
    G. M. Haarberga and M. Keppertb: Ecs. Trans., 2009, vol. 16, pp. 309-15.CrossRefGoogle Scholar
  4. 4.
    S. Licht and H. Wu: J. Phys. Chem. C., 2011, vol. 115, pp. 25138-47.CrossRefGoogle Scholar
  5. 5.
    H. Yin, D. Tang, H. Zhu, Y. Zhang and D. Wang: Electrochem. Commun., 2011, vol. 13, pp. 1521-24.CrossRefGoogle Scholar
  6. 6.
    C. Donath, E. Neacsu and N. Ene: Rev. Roum. Chim., 2011, vol. 56, pp. 763-69.Google Scholar
  7. 7.
    G. M. Haarberg, E. Kvalheim, S. Rolseth, T. Murakami, S. Pietrzyk and S. Wang: Ecs. Trans., 2007, vol. 3, pp. 341-45.CrossRefGoogle Scholar
  8. 8.
    L. Li, X. Liu and S. Wang: in Energy Technology 2014: Carbon Dioxide Management and Other Technologies, Eds.: C Wang, J Bakker, C. K. Belt, A. Jha, N. R. Neelameggham, S. Pati, L. H. Prentice, G. Tranell and K. S. Brinkman, John Wiley & Sons, Inc. 2014, pp. 135-40.CrossRefGoogle Scholar
  9. 9.
    S. L. Wang,G. M. Haarberg and E. Kvalheim: J. Iron Steel. Res. Int., 2008, vol. 15, pp. 48-51.CrossRefGoogle Scholar
  10. 10.
    M. A. Quader, S. Ahmed, S. Z. Dawal and Y. Nukman: Renew. Sust. Energ. Rev., 2016, vol. 55, pp. 537-49.CrossRefGoogle Scholar
  11. 11.
    S. Jahanshahi, J. G. Mathieson and H. Reimink: J. Sustain. Metall., 2016, vol. 2, pp. 185-90.CrossRefGoogle Scholar
  12. 12.
    A. Allanore, L. Yin and D. R. Sadoway: Nature, 2013, vol. 497, pp. 353-56.CrossRefGoogle Scholar
  13. 13.
    D. H. Wang, A. J. Gmitter and D. R. Sadoway: J. Electrochem. Soc., 2011, vol. 158, pp. E51-54.CrossRefGoogle Scholar
  14. 14.
    A. H. C. Sirk, D. R. Sadoway and L. Sibille: Ecs. Trans., 2010, vol. 28, pp. 367-73.CrossRefGoogle Scholar
  15. 15.
    A. Allanore: Electrochim. Acta, 2013, vol. 110, pp. 587-592.CrossRefGoogle Scholar
  16. 16.
    A. Allanore: J. Electrochem. Soc., 2015, vol. 162, pp. E13-E22.CrossRefGoogle Scholar
  17. 17.
    G. Z. Chen, D. J. Fray and T. W. Farthing: Nature, 2000, vol. 407, pp. 361-64.CrossRefGoogle Scholar
  18. 18.
    H. Gao, X. Jin, S. Zou, F. Ling, J. Peng, Z. Wang and G. Z. Chen: Electrochim. Acta, 2013, vol. 107, pp. 261-68.CrossRefGoogle Scholar
  19. 19.
    G. Li, D. Wang and Z. Chen: J. Mater. Sci. Technol., 2009, vol. 25, pp. 767-71.Google Scholar
  20. 20.
    D. Tang, H. Yin, W. Xiao, H. Zhu, X. Mao and D. Wang: J. Electroanal. Chem., 2013, vol. 689, pp. 109-16.CrossRefGoogle Scholar
  21. 21.
    A. Cox and D. J. Fray: J. Appl. Electrochem., 2008, vol. 38, pp. 1401-07.CrossRefGoogle Scholar
  22. 22.
    Y. Berghoute, A. Salmi and F. Lantelme: J. Electroanal. Chem., 1994, vol. 365, pp. 171-77.CrossRefGoogle Scholar
  23. 23.
    K. K. Kasem and S. Jones: Platinum Metals Rev., 2008, vol. 52, pp. 100-06.CrossRefGoogle Scholar
  24. 24.
    D. J. Fray: Metall. Mat. Trans. B, 2003, vol. 34, pp. 589-94.CrossRefGoogle Scholar
  25. 25.
    M.J.U.T. Van Wijngaarden, R. J. Dippenaar and P. M. Van Den Heever: J. S. Afr. Inst. Min. Metall., 1987, vol. 87, pp. 269-78.Google Scholar
  26. 26.
    Y. M. Gao, J. X. Song, Y. Q. Zhang and X. M. Guo: Acta Metall. Sin., 2010, vol. 46, pp. 277-81.CrossRefGoogle Scholar
  27. 27.
    R. Ganesan, T. Gnanasekaran and R. S. Srinivasa: J. Nucl. Mater., 2006, vol. 349, pp. 133-49.CrossRefGoogle Scholar
  28. 28.
    T. Ogura, R. Fujiwara, R. Mochizuki, Y. Kawamoto, T. Oishi and M. Iwase: Metall. Trans. B, 1992, vol. 23B, pp. 459-66.CrossRefGoogle Scholar
  29. 29.
    E.T. Turkdogan: Ironmaking Steelmaking, 2000, vol. 27, pp. 32-36.CrossRefGoogle Scholar
  30. 30.
    P. Soral, U. Pal, H. R. Larson and B. Schroeder: Metall. Mat. Trans. B, 1999, vol. 30B, pp. 307-21.CrossRefGoogle Scholar
  31. 31.
    W. Kim, D. J. Min, Y. S. Lee and J. H. Park: ISIJ Int., 2009, vol. 49, pp. 1882-88.CrossRefGoogle Scholar
  32. 32.
    X. Guan, S. Su,U. B. Pal and A. C. Powell: Metall. Mat. Trans. B, 2014, vol. 45B, pp. 2138-44.CrossRefGoogle Scholar
  33. 33.
    A. Krishnan, X.G. Lu and U.B. Pal: Metall. Mat. Trans. B, 2005, vol. 36B, pp. 463-73.CrossRefGoogle Scholar
  34. 34.
    E. S. Gratz, X. Guan, J. D. Milshtein, U. B. Pal and A. C. Powell, Metall. Mat. Trans. B, 2014, 45B, pp. 1325-36.CrossRefGoogle Scholar
  35. 35.
    Y. M Gao, C. Duan, Y. B. Yang, D. Ruan, C. H. Yang and C. Hong: ISIJ Int., 2015, vol. 55, pp. 2273-82.CrossRefGoogle Scholar
  36. 36.
    Y. M. Gao, B. Wang, S. B. Wang and S. Peng: J. Min. Metall. Sect. B, 2013, vol. 49, pp. 49-55.CrossRefGoogle Scholar
  37. 37.
    C. Mallika, O. M. Sreedharan and R. Subasri: J. Eur. Ceram. Soc., 2000, vol. 20, pp. 2297-2313.CrossRefGoogle Scholar
  38. 38.
    S. C. Britten and U. B. Pal: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 733-53.CrossRefGoogle Scholar
  39. 39.
    C. Z. Wang: Solid Electrolyte and Chemical Sensors, Metallurgical Industry Press, Beijing, 2000.Google Scholar
  40. 40.
    N. Otsuka: ECS Transactions, 2012, vol. 41, pp. 13-19.CrossRefGoogle Scholar
  41. 41.
    S. H. Cho, D. Y. Kim, S. Kwon, B. H. Yoon and J. H. Lee: J. Nucl. Sci. Technol., 2018, vol. 55, pp.97-103.CrossRefGoogle Scholar
  42. 42.
    S.H. Cho, S.W. Kim, D.Y. Kim, J.H. Lee and J.M. Hur: J. Nucl. Mater., 2017, vol. 490, pp.85-93.CrossRefGoogle Scholar
  43. 43.
    Y. Gao, C. Yang, C. Zhang, Q. Qin and G. Z. Chen: Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 15876-90.CrossRefGoogle Scholar
  44. 44.
    Y. Gao, C. Hong and C. Yang: J. Electrochem. Soc., 2015, vol. 162, pp. E362-69.CrossRefGoogle Scholar
  45. 45.
    K. Igarashi, H. Ohtani and J. Mochinaga: Z. Für Naturforsch. A, 1987, vol. 42A, pp. 1421-24.Google Scholar
  46. 46.
    X.Y. Chen: Solubility of Oxides in Molten Salts and the Preparation of Carbide-Derived Carbon by Fused Salt Electrolysis Process (Master’s Thesis), Northeastern University, Shenyang, 2012.Google Scholar
  47. 47.
    G. M. Haarberg, E. Kvalheim and S. Rolseth: Electrochemical behaviour of dissolved iron species in molten salts, in Molten Salts XIV-Proc. Int. Symp., R.A. Mantz et al, eds., PV 2004-24, The Electrochemical Society Proceedings Series, Pennington, NJ, 2004, p. 890.Google Scholar
  48. 48.
    Factsage 7.1 (Centre for Research in Computational Thermochemistry (CRCT) and GTT-Technologies, 2017), Accessed 2 Aug 2017.
  49. 49.
    J. Yu, W. Yi, B. Chen and H. Chen: Binary Alloy Phase Diagrams, Shanghai Scientific and Technical Publishers, Shanghai, 1987, pp. 371.Google Scholar
  50. 50.
    H. E. Ghallali, H. Groult, A. Barhoun, K. Draoui and D. Krulic: Electrochim. Acta, 2009, vol. 54, pp. 3152-60.CrossRefGoogle Scholar
  51. 51.
    A. J. Bard and L. R. Faulkner: Electrochemical Methods Fundamentals and Applications, 2nd Ed., John Wiley & Sons, Inc, New York, 2001, pp. 226-61.Google Scholar
  52. 52.
    A. J. Bard and L.R. Faulkner: Electrochemical Methods Fundamentals and Applications, 2nd Ed., John Wiley & Sons, Inc, New York, 2001, pp. 669-76.Google Scholar
  53. 53.
    H. Tang and B. Pesic: Electrochim. Acta, 2014, vol. 119, pp. 120-30.CrossRefGoogle Scholar
  54. 54.
    M. Gibilaro, L. Massot, P. Chamelot, L. Cassayre and P. Taxil: Electrochim. Acta, 2013, vol. 95, pp. 185-91.CrossRefGoogle Scholar
  55. 55.
    M. Jayakumar, K. A. Venkatesan and T. G. Srinivasan: Electrochim. Acta. 2008, vol. 53, pp. 2794-2801.CrossRefGoogle Scholar
  56. 56.
    T. Sakurada, H. Maekawa and T. Yokokawa: Mater. Trans., 2007, vol. 39, pp. 740-46.CrossRefGoogle Scholar
  57. 57.
    Q. R. Shi, S. Z. Duan and S. M. Wu: J. Univ. Sci. Technol. B., 1994, vol. 16, pp. 599-603.Google Scholar
  58. 58.
    W. Huang, L. Tian, C. She, F. Jiang, H. Zheng, W. Li, G. Wu, D. Long and Q. Li: Electrochim. Acta, 2014, vol. 147, pp. 114-20.CrossRefGoogle Scholar
  59. 59.
    Z. Chen, Y. J. Li and S. J. Li: J. Alloys Compd., 2011, vol. 509, pp. 5958-61.CrossRefGoogle Scholar
  60. 60.
    C. Nourry, P. Souček, L. Massot, R. Malmbeck, P. Chamelot and J.-P. Glatz: J. Nucl. Mater., 2012, vol. 430, pp. 58-63.CrossRefGoogle Scholar
  61. 61.
    F. H. Hu: Molten Salt Physical Chemistry, China Industry Press, Beijing, 1963, pp.73-96.Google Scholar
  62. 62.
    D. Shuzhen, P. Dudley and D. Inman: J. Electroanal. Chem. Interf. Electrochem., 1982, vol. 142, pp. 215-28.CrossRefGoogle Scholar
  63. 63.
    B. Khalaghia, E. Kvalheima, M. Tokushigeb, L. Teng, S. Seetharamanc and G. M. Haarbergd: ECS Trans., 2014, vol. 64, pp. 301-10.CrossRefGoogle Scholar
  64. 64.
    Z. Guangwen, L. Yupin and Z. Yuankai: Journal of Beijing iron and steel institute, 1983, 53: 68-78.Google Scholar
  65. 65.
    L. Massot, P. Chamelot and F. Bouyer: Electrochim. Acta, 2002, vol. 47, pp. 1949-57.CrossRefGoogle Scholar
  66. 66.
    S. Frangini and S. Scaccia: J. Electrochem. Soc., 2005, vol.152, pp. A2155-58.CrossRefGoogle Scholar
  67. 67.
    V. A. Volkovich, T. R. Griffiths, D. J. Fray and R. C. Thied: J. Nucl. Mater., 2000, vol. 282, pp. 152-58.CrossRefGoogle Scholar
  68. 68.
    M. Hayyan, M. A. Hashim and I. M. AlNashef: Chem. Rev., 2016, vol. 116, pp. 3029-85.CrossRefGoogle Scholar
  69. 69.
    P. G. Zambonin: J. Phys. Chem., 1974, vol. 78, pp. 1294-98.CrossRefGoogle Scholar
  70. 70.
    M. Chandra, S. Vandarkuzhali, S. Ghosh, N. Gogoi, P. Venkatesh, G. Seenivasan, B. P. Reddy and K. Nagarajan: Electrochim. Acta, 2011, vol. 58, pp. 150-56.CrossRefGoogle Scholar
  71. 71.
    C. Hamel, P. Chamelot and P. Taxil: Electrochim. Acta, 2004, vol. 49, pp. 4467-76.CrossRefGoogle Scholar
  72. 72.
    A. Wiedenroth and C. Rüssel: J. Non-Cryst. Solids, 2004, vol. 347, pp. 180-86.CrossRefGoogle Scholar
  73. 73.
    A. Wiedenroth and C. Rüssel: J. Non-Cryst. Solids, 2001, vol. 290, pp. 41-48.CrossRefGoogle Scholar
  74. 74.
    E. Freude: Voltammetrische Untersuchung des Redoxverhaltens Polyvalenter Ionen in Glasschmelzen, Insbesondere von Technetium,Thesis Erlangen, 1989.Google Scholar
  75. 75.
    C. Rüssel and E. Freude: Glastech. Ber., 1990, vol. 63, pp. 149-53.Google Scholar
  76. 76.
    O. Claussen and C. Rüssel: Glastech. Ber. Glass Sci. Technol., 1996, vol. 69, pp. 95-100.Google Scholar
  77. 77.
    A.W.M. Wondergem-de Best: Redox Behaviour and Fining of Molten Glass (Doctoral Thesis), Technische Universiteit Eindhoven, 1994, pp. 126.Google Scholar
  78. 78.
    K. Serrano and P. Taxil: J. Appl. Electrochem., 1999, vol. 29, pp. 505-10.CrossRefGoogle Scholar
  79. 79.
    A. J. Bard and L. R. Faulkner: Electrochemical Methods Fundamentals and Applications, 2nd Ed., John Wiley & Sons, Inc, New York, 2001, pp. 161-65.Google Scholar
  80. 80.
    J. De Strycker, P. Westbroek and E. Temmerman: J. Electroanal. Chem., 2004, vol. 565, pp.149-58.CrossRefGoogle Scholar
  81. 81.
    Y. M. Kan, S. L. Li, P. L. Wang, G. J. Zhang, O. V. de Biest and J. Vleugels: Solid State Ionics, 2008, vol. 179, pp. 1531-1534.CrossRefGoogle Scholar
  82. 82.
    Z. G. Lv, P. Yao, R. S. Guo and F.Y. Dai: Mat. Sci. Eng. A, 2007, vol. 458, pp. 355-360.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Hongbo Hu
    • 1
    • 2
  • Yunming Gao
    • 1
    • 2
    Email author
  • Yigui Lao
    • 1
    • 2
  • Qingwei Qin
    • 1
    • 2
  • Guangqiang Li
    • 1
    • 2
  • George Z. Chen
    • 1
    • 2
    • 3
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of EducationWuhan University of Science and TechnologyWuhanChina
  3. 3.Department of Chemical and Environmental Engineering, and Energy Engineering Research Group, Faculty of Science EngineeringUniversity of Nottingham Ningbo ChinaNingboChina

Personalised recommendations