Metallurgical and Materials Transactions B

, Volume 49, Issue 6, pp 3067–3073 | Cite as

Kinetics of Reduction of Low-Grade Nickel Laterite Ore Using Carbon Monoxide

  • Bo LiEmail author
  • Zhiguang Ding
  • Yonggang Wei
  • Hua Wang
  • Yindong Yang
  • Mansoor Barati


Reduction of a low-grade nickel laterite ore with carbon monoxide to produce Fe-Ni alloy was investigated using a thermo-gravimetric analysis (TGA) method. Non-isothermal reduction tests with a fixed heating rate of 10 °C/min from room temperature to 1200 °C were carried out to determine the different reduction stages and reaction products in each state. Combining measured mass losses with theoretically calculated values together with X-ray diffraction analysis, the products of different reduction stages were identified and a reaction path was established. Isothermal reduction tests with temperatures ranging from 500 °C to 1100 °C were performed to evaluate the temperature dependence of the reduction kinetics. Various kinetic models were fitted to the experimental data to further determine the rate-controlling step in the isothermal tests. Then, two groups of TG experiments were carried out to study the effect of CO flow rate and sample mass on the rate of reaction. The results indicated that the reduction rate increases with the increase of the reduction temperature from 500 °C to 1100 °C. More alloy products are formed and the apparent activation energies increase from 8.6 to 14.7 kJ/mol with the increase of the reduction temperature from 700 °C to 1100 °C. Accordingly, it was proposed that diffusion of CO in the gas bulk and through the pores of the laterite ore sample bed are the rate limiting steps.



Financial support for this study was provided from the National Natural Science Foundation of China (Project Nos. 51304091 and U1302274).


  1. 1.
    P. Y. Zhang, Q. Guo, G.Y. Wei, L. Meng, L.X. Han, J.K. Qu and T. Qi: Hydrometallurgy, 2015, vol. 157, pp. 149-158.CrossRefGoogle Scholar
  2. 2.
    C.R.M. Butt and D. Cluzel: Elements, 2013, vol. 9, pp. 123-128.CrossRefGoogle Scholar
  3. 3.
    B. Li, H. Wang and Y. G. Wei: Miner. Eng., 2011, vol. 24, pp. 1556-1562.CrossRefGoogle Scholar
  4. 4.
    T. Norgate and S. Jahanshahi: Miner. Eng., 2010, vol. 23, pp. 65-73.CrossRefGoogle Scholar
  5. 5.
    C.A. Pickles, J. Forster and R. Elliott: Miner. Eng., 2014, vol. 65, pp. 33-40.CrossRefGoogle Scholar
  6. 6.
    R.R. Moskalyk and A.M. Alfantazi: Miner. Eng., 2002, vol. 15, pp. 593-605.CrossRefGoogle Scholar
  7. 7.
    G.H. Li, T.M. Shi, M.J. Rao, T. Jiang and Y.B. Zhang: Miner. Eng., 2012, vol. 32, pp. 19-26.CrossRefGoogle Scholar
  8. 8.
    D.Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan and G.L. Zheng: Int. J. Miner. Process., 2012, vol. 106-109, pp. 1-7.Google Scholar
  9. 9.
    K.S. Abdel-halim, M.H. Khedr, M.I. Nasr and M.S. Abdel-wahab: J. Alloys Compd., 2008, vol. 463, pp. 585-590.CrossRefGoogle Scholar
  10. 10.
    K.S. Abdel-halim, M. Bahgat and O.A. Fouad: Mater. Sci. Technol. 2013, vol. 22, pp. 1396-1400.CrossRefGoogle Scholar
  11. 11.
    D.W. Yu, M.Q. Zhu, T.A. Utigard and M. Barati: Miner. Eng., 2013, vol. 54, pp. 32-38.CrossRefGoogle Scholar
  12. 12.
    M.L. Nasr, A.A. Omar, M.H. Khedr and A.A. El-geassy: ISIJ Int., 1995, vol. 35, pp. 1043-1049.CrossRefGoogle Scholar
  13. 13.
    M. Bahgat, M. Paek and J. Pak: J. Alloys Compd., 2009, vol. 472, pp. 314-318.CrossRefGoogle Scholar
  14. 14.
    B. Li, Y.G Wei and H. Wang: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 3710-3715.CrossRefGoogle Scholar
  15. 15.
    Y.K. Wang, Y.G. Wei, B. Li, S.W. Zhou and Z.G. Ding: Chin. J. Process Eng., 2016, vol. 16, pp. 1052-1057.Google Scholar
  16. 16.
    S.W. Zhou, Y.G. Wei, B. Li, H. Wang, B.Z. Ma and C.Y. Wang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 145-153.CrossRefGoogle Scholar
  17. 17.
    J. Kim, G. Dodbiba, H. Tanno, K. Okaya, S. Matsuo and T. Fujita: Miner. Eng., 2010, vol. 23, pp. 282-288.CrossRefGoogle Scholar
  18. 18.
    W.K. Jozwiak, E. Kaczmarek, T.P. Maniecki, W. Ignaczak and W. Maniukiewicz: Appl. Catal. A- Gen, 2007, vol. 326, pp. 17-27.CrossRefGoogle Scholar
  19. 19.
    A. Pineau, N. Kanari and I. Gaballah: Thermochim. Acta, 2006, vol. 447, pp. 89-100.CrossRefGoogle Scholar
  20. 20.
    A.A. El-geassy, M.I. Nasr and M.M. Hessien: ISIJ Int., 1996, vol. 36, pp. 640-649.CrossRefGoogle Scholar
  21. 21.
    J.M. Pang, P.M. Guo, P.Zhao, C.Z. Cao and D.W. Zhang: J. Iron Steel Res. Int., 2009, vol. 16, pp. 7-11.CrossRefGoogle Scholar
  22. 22.
    Q. Li, B. Li, Y.G. Wei, S.W. Zhou and H. Wang: Chin. J. Rare Met., 2016, vol. 40, pp. 485-491.Google Scholar
  23. 23.
    S. Kachi, K. Momiyama and S. Shimizu: J. Phys. Soc. Jpn., 1963, vol. 18, pp. 106-116.CrossRefGoogle Scholar
  24. 24.
    H. Park and V. Sahajwalla: ISIJ Int., 2014, vol. 54, pp. 49-55.CrossRefGoogle Scholar
  25. 25.
    S. Vyazovkin and C.A. Wight: Thermochim. Acta, 1999, vol. 340-341, pp. 53-68.CrossRefGoogle Scholar
  26. 26.
    K.M. Hamdy: ISIJ Int., 2000, vol. 40, pp. 309-314.CrossRefGoogle Scholar
  27. 27.
    S.Nasr and K.P. Plucknett: Energy Fuels, 2014, vol. 28, pp. 1387-1395.CrossRefGoogle Scholar
  28. 28.
    J.O. Park, H.S. Kim and S.M. Jung: Miner. Eng., 2015, vol. 71, pp. 205-215.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Bo Li
    • 1
    Email author
  • Zhiguang Ding
    • 1
  • Yonggang Wei
    • 1
  • Hua Wang
    • 1
  • Yindong Yang
    • 2
  • Mansoor Barati
    • 2
  1. 1.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingChina
  2. 2.Department of Material Science and EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations