Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2599–2610 | Cite as

Simulation of Air Entrainment during Mold Filling: Comparison with Water Modeling Experiments

  • Seyyed Hojjat Majidi
  • John Griffin
  • Christoph Beckermann
Technical Publication

Abstract

Oxide inclusions form during pouring of metal castings as a result of air entrainment. Recently, a model was developed by the authors to predict the volumetric air entrainment during pouring. It was found that the velocity, diameter, and turbulence intensity of the liquid stream affect the air entrainment rate during pouring. In this study, the developed air entrainment model is validated with water modeling experiments. In the water modeling studies, water was poured using a bottom pour ladle. The effects of nozzle opening, head height, nozzle diameter, and nozzle extension are simulated. The predictions compare favorably with the experimental measurements. Results indicate that low head height and short pouring time have a beneficial effect on reducing the air entrainment during pouring. In addition, a fully open nozzle and the use of a nozzle extension further reduce the amount of entrained air.

References

  1. 1.
    J. Campbell: Complete Casting Handbook, 1st ed., Butterworth-Heinemann, Oxford, UK, 2011.Google Scholar
  2. 2.
    A.J. Melendez, K.D. Carlson and C. Beckermann: Int. J. Cast Met. Res., 2010, vol. 23, pp. 278–288.CrossRefGoogle Scholar
  3. 3.
    D.R. Askeland, P.K. Trojan and R.A. Flinn: AFS Trans., 1972, vol. 80, pp. 349-58.Google Scholar
  4. 4.
    J. Campbell: Mater. Sci. Tech., 2006, vol. 22, pp. 127-45.CrossRefGoogle Scholar
  5. 5.
    M. Divandari and J. Campbell: Aluminum Trans., 2000, vol. 2, pp. 233-238.Google Scholar
  6. 6.
    T.J. Lin and H.G. Donnelly: AIChE, 1966, vol. 12, pp. 563-571.CrossRefGoogle Scholar
  7. 7.
    A.K. Biń: Chem. Eng. Sci., 1993, vol. 48, pp. 3585-3630.CrossRefGoogle Scholar
  8. 8.
    D.A. Ervine, E. McKeough and E.M. Elsawy: ICE Proc., 1980, vol. 69, pp. 425-445.Google Scholar
  9. 9.
    K.J. Sene: Chem. Eng. Sci., 1988, vol. 43, pp. 2615-2623.CrossRefGoogle Scholar
  10. 10.
    E. Van de Sande and J.M. Smith: Chem. Eng. Sci., 1976, vol. 31, pp. 219-224.CrossRefGoogle Scholar
  11. 11.
    T. Brattberg and H. Chanson: Chem. Eng. Sci., 1998, vol. 24, pp. 4113-4127.CrossRefGoogle Scholar
  12. 12.
    C. Wanstall, J. Griffin and C.E. Bates: Proc. 47th SFSA Technical and Operating Conference, Chicago, IL, 1993, Paper No. 1.1.Google Scholar
  13. 13.
    C.E. Bates and J. Griffin: Research report no. 106, Steel Founders’ Society of America (SFSA), Crystal Lake, IL, USA, 1994.Google Scholar
  14. 14.
    S. Kuyucak: AFS Trans., 2006, vol. 114, pp. 811-818.Google Scholar
  15. 15.
    T. Wang, S. Yao, Q. Tong and L. Sui: J. Manuf. Process, 2017, vol. 27, pp. 108-113.CrossRefGoogle Scholar
  16. 16.
    M. Afsharpour, B. Homayun and S.M.A. Boutorabi: Mater. Sci. Tech., 2014, vol. 30, pp. 152-159.CrossRefGoogle Scholar
  17. 17.
    J. Ma, A.A. Oberai, D.A. Drew, R.T. Lahey and M. Hyman: J. Comput. Multiphase Flow, 2011, vol. 3, pp. 41-56.CrossRefGoogle Scholar
  18. 18.
    S.H. Majidi and C. Beckermann: Int. J. Cast Met. Res., 2017, vol. 30, pp. 301-315.CrossRefGoogle Scholar
  19. 19.
    MAGMAsoft, MAGMA Gmbh, Kackerstrasse 11, 52072 Aachen, Germany.Google Scholar
  20. 20.
    F. White: Fluid Mechanics, 7th ed., Mcgraw Hill Higher Education, New York, USA, 2010.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Seyyed Hojjat Majidi
    • 1
  • John Griffin
    • 2
  • Christoph Beckermann
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of IowaIowa CityUSA
  2. 2.Department of Material Science and EngineeringUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations