Advertisement

Three-Dimensional Predominance Volume Diagrams: The Ni-As-S-O System

  • Stanley M. Howard
Article

Abstract

The 3D predominance volume diagram (PVD) for the Ni-As-S-O system at 700 K (427 °C) was constructed using independent gases O2, SO2, and As4O6. The system has 15 four-condensed-phase invariant points. Invariant points, fixed by any combination of boundaries and condensed phases totaling four, were determined by a Gibb’s minimization routine that searched from a corner of the PVD along each undetermined line emanating from this and subsequently-identified invariants. The search direction was determined from the cross product of the two independent planes’ normal direction vectors. The 0.25 atm and 1.00 atm isobaric surfaces intersect the Ni3As2O8, NiO, NiSO4, Ni1−xS, NiS2, and Ni11As8 phases. The 1.00 atm surface also intersects the NiAs phase. The PVD results agree with published ternary and quaternary phase diagram Alkemade lines. If the roasting of gersdorffite (NiAsS) parallels the roasting of enargite (Cu3AsS4), gersdorffite is expected to initially react irreversibly with O2 in the roasting gas to form NiS and NiSO4 topochemical layers with arsenic being expelled as As4O6 gas and perhaps As4 gas once a diffusion-controlled topochemical reaction sequence is established. Thermochemical calculations showed that the formation of NiO from NiSO4 and Ni3As2O8, if present, becomes more favorable as the temperature is increased with complete conversion to NiO above 1086 K and 1160 K (813 °C and 887 °C), respectively, at 1.00 atm.

References

  1. 1.
    Kellogg, H.H. and S. Basu, Thermodynamic properties of the system lead-sulfur-oxygen to 1100 K. Trans Metall Soc AIME, 1960. 218: p. 70-81.Google Scholar
  2. 2.
    M.S. Safarzadeh and S.M. Howard: Min. Process. Extract. Metall. Rev., 2017;39(3), 191-197.CrossRefGoogle Scholar
  3. 3.
    B.J. Skinner, F.D. Luce, J.A. Dill, D.E. Ellis, H.A. Hagan, D.M. Lewis, D.A. Odell, D.A. Sverjensky, and N. Williams, Phase relations in ternary portions of the system Pt-Pd-Fe-As-S. Econ. Geol., 1976. 71: p. 1469-1475.CrossRefGoogle Scholar
  4. 4.
    E. Makovicky, S. Karup-Møller, M. Mackovicky, and J. Rose-Hansen, Experimental studies on the phase systems Fe-Ni-Pd-S and Fe-Pt-Pd-As-S applied to PGE deposits. Mineral. Petrol., 1990. 42: p. 307-319.CrossRefGoogle Scholar
  5. 5.
    Fleet, M., J. Crocket, and W. Stone, Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochimica et Cosmochimica Acta, 1996. 60(13): p. 2397-2412.CrossRefGoogle Scholar
  6. 6.
    Gervilla, F., Makovicky, E., Makovicky, M., and Rose-Hansen, J., The system Pd-Ni-As at 790 degrees and 450 degrees C. Economic Geology, 1994. 89: p. 1630-1639.CrossRefGoogle Scholar
  7. 7.
    Hanley, J.J., The role of arsenic-rich melts and mineral phases in the development of high-grade Pt-Pd mineralization within komatiite-associated magmatic Ni-Cu sulfide horizons at Dundonald Beach South, Abitibi subprovince, Ontario, Canada. Economic Geology, 2007. 102(2): p. 305-317.CrossRefGoogle Scholar
  8. 8.
    M. Wood: Unpublished B. Sc. Thesis, Toronto, Ontario, Canada, University of Toronto, 2003.Google Scholar
  9. 9.
    Safarzadeh, M.S., M.S. Moats, and J.D. Miller, An update to “Recent trends in the processing of enargite concentrates”. Min. Proc. and Extractive Metallurgy Review, 2014. 35(6): p. 390-422.CrossRefGoogle Scholar
  10. 10.
    M.S. Safarzadeh and S.M. Howard: J. Hazard. Mater., 2018, vol. 347, pp. 371-77.CrossRefGoogle Scholar
  11. 11.
    M.S. Safarzadeh, S.M. Howard, and J.D. Miller: Vacuum, 2018,  https://doi.org/10.1016/j.vacuum.2018.06.067.Google Scholar
  12. 12.
    T. Ingraham: AIME Met Soc Trans, 1966. 236(7): 1064-1067.Google Scholar
  13. 13.
    T. Ingraham: Sulphate Stability and Thermodynamic Phase Diagrams with Particular Reference to Roasting. 1967.Google Scholar
  14. 14.
    R.P. Elliott and M. Hansen: Constitution of Binary Alloys. First Supplement. McGraw-Hill series in materials science and engineering. McGraw-Hill, New York, 1965.Google Scholar
  15. 15.
    M. Hansen and K. Anderko: Metallurgy and Metallurgical Engineering Series, 2nd ed., McGraw-Hill, New York, 1958.Google Scholar
  16. 16.
    F.A. Shunk, M. Hansen, and I.I.T.R. Institute: Constitution of Binary Alloys: Second Supplement. McGraw-Hill Series in Materials Science and Engineering. McGraw-Hill, New York, 1969.Google Scholar
  17. 17.
    Y.A. Chang and R.C. Sharma: TMS-AIME Annual Meeting; Metallurgical Society of AIME Annual Meeting, Metallurgical Society of the Minerals, Metals Materials Society, Warrendale, PA, 1979.Google Scholar
  18. 18.
    A.S.M.H. Committee and A.S.M.I.H. Committee: Metals Handbook, 9th edn, Vol. 8. American Society for Metals, Metals Park, OH, 1978.Google Scholar
  19. 19.
    Nagamori, M. and T. Ingraham, Thermodynamic properties of Ni-S melts between 700° and 1100° c. Metallurgical Transactions, 1970. 1(7): p. 1821-1825.CrossRefGoogle Scholar
  20. 20.
    Rosenqvist, T., A thermodynamic study of the iron, cobalt, and nickel sulfides. J. Iron Steel Inst, 1954. 176: p. 37-57.Google Scholar
  21. 21.
    B.J. Wuensch and P.H. Ribbe, eds.: Sulfide Phase Equilibria. Mineralogical Society of America Short Course Notes, Vol. 1. Mineralogical Society of America, Washington, 1974.Google Scholar
  22. 22.
    O. Kubaschewski and C.B. Alcock: Metallurgical Thermochemistry. 5th edn, Pergamon Press, New York, 1979.Google Scholar
  23. 23.
    Laffitte, M., Etude thermodynamique des monosilphides de nickel et de cobalt. Bull. Soc. Chim. France, 1959. 1959: p. 1211-33.Google Scholar
  24. 24.
    Leegaard, T. and T. Rosenqvist, Der Zersetzungsdruck und die Phasengleichgewichte der höheren Sulfide von Kobalt und Nickel. Zeitschrift für anorganische und allgemeine Chemie, 1964. 328(5-6): p. 294-298.CrossRefGoogle Scholar
  25. 25.
    Lin, R., D. Hu, and Y. Chang, Thermodynamics and phase relationships of transition metal-sulfur systems: II. The nickel-sulfur system. Metallurgical Transactions B, 1978. 9(4): p. 531-538.CrossRefGoogle Scholar
  26. 26.
    Line, G. and M. Laffitte, CHIMIE MINERALE-ETUDE THERMODYNAMIQUE DE LA PHASE NON STOECHIOMETRIQUE N13+/-XS2. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1963. 256(15): p. 3306-&.Google Scholar
  27. 27.
    Meyer, G.A., Warner, J.S., Rao, Y.K., and Kellogg, H.H., Thermodynamic properties of molten sulfides: Part I. The system Ni− S. Metallurgical Transactions B, 1975. 6(2): p. 229-235.CrossRefGoogle Scholar
  28. 28.
    Rau, H., Range of homogeneity and defect interaction in high temperature nickel sulfide Ni1− xs. Journal of Physics and Chemistry of Solids, 1975. 36(11): p. 1199-1204.CrossRefGoogle Scholar
  29. 29.
    Rau, H., Homogeneity range of high temperature Ni3±x S2. Journal of Physics and Chemistry of Solids, 1976. 37(10): p. 929-930.CrossRefGoogle Scholar
  30. 30.
    Sharma, R. and Y. Chang, Thermodynamics and phase relationships of transition metal-sulfur systems: IV. Thermodynamic properties of the Ni-S liquid phase and the calculation of the Ni-S phase diagram. Metallurgical Transactions B, 1980. 11(1): p. 139-146.CrossRefGoogle Scholar
  31. 31.
    Venal, W.V. and G.H. Geiger, The thermodynamic behavior of sulfur in molten nickel and nickel-base alloys. Metallurgical Transactions, 1973. 4(11): p. 2567-2573.CrossRefGoogle Scholar
  32. 32.
    Jacinto, N., M. Nagamori, and H. Sohn, PREDOMINANCE AREA DIAGRAMS OF THE SYSTEM Ni-SO. Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, 1983. 92: p. 225-228.Google Scholar
  33. 33.
    Shariat, M. and S. Behgozin, A new look at nickel-oxygen-sulfur diagrams. Calphad, 1996. 20(1): p. 47-67.CrossRefGoogle Scholar
  34. 34.
    Lynch, D., Standard free energy of formation of NiAs. Metallurgical Transactions B, 1982. 13(2): p. 285-288.CrossRefGoogle Scholar
  35. 35.
    Shigematsu, K., Vapor pressure measurements of arsenic compounds. Metallurgical Review of MMIJ, 1986. 3(2): p. 29-48.Google Scholar
  36. 36.
    D. Lynch: in Arsenic Metallurgy Fundamentals and Applications, R. Reddy, J. Hendrix, and P. Queneau, eds., TMS Inc, Phoenix, AZ, 1988: pp. 3–33.Google Scholar
  37. 37.
    F. Tesfaye and P. Taskinen: Thernmodynamics and Phase Equilibria in the (Ni, Cu, Zn)-(As, Sb, Bi)-S Systems at Elevated Temperature (300-900 C). University of Helsinki, Helsinki, 2010.Google Scholar
  38. 38.
    Yund, R., The system Ni-As-S; phase relations and mineralogical significance. American Journal of Science, 1962. 260(10): p. 761-782.CrossRefGoogle Scholar
  39. 39.
    Pierre, V., P. Alan, and H. Okamoto, Handbook of ternary alloy phase diagrams. ASM International: Geauga County, OH, USA, 1995.Google Scholar
  40. 40.
    Thermo-Calc Software SSUB3 database, 2016.Google Scholar
  41. 41.
    H. Gamsjäger, F.J. Mompean; Issy-les-Moulineaux, Chemical Thermodynamics of Nickel, Elsevier, Amsterdam 2005.Google Scholar
  42. 42.
    Y. Yang, L. Cui, X. Li, Q. Li, T. Jiang, and J. Ge: J. Cent. S. Univ., 2013. vol. 20(11): p. 2967-2973.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Materials and Metallurgical EngineeringSouth Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations