Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2322–2331 | Cite as

Thermodynamic Study on MgO Solubility in High-Alumina-Content Slag System

  • Cheol Min Yoon
  • Youngjoo Park
  • Dong Joon MinEmail author


In the current study, the MgO solubility in molten slag was measured to clarify the effect of basicity and Al2O3 content on the MgO solubility equilibrating with the spinel solid phase in the CaO-SiO2-Al2O3 system. The MgO solubility decreased with the increasing basicity of the slag. However, the MgO solubility in the spinel equilibrium region exhibited different dependence when compared with the basicity dependence in the MgO equilibrium region. The aforementioned experimental results were quantitatively analyzed using magic-angle spinning (MAS) 27Al nuclear magnetic resonance (NMR) spectroscopy, in which the fraction of Al ions in the slag of spinel equilibrium region was changed to 4, 5, and 6. In addition, the analysis of the degree of Al avoidance modeling indicated that the change in bridging oxygen (BO) linkage species (distinguished into Al-O-Al, Si-O-Si, and Al-O-Si) was based on the Al/Si ratio change. The aforementioned change in BO linkage species led to a change in the MgO solubility with the stability of the alumina. Thus, the spinel equilibrium dissolution mechanism is discussed in detail in terms of the thermodynamic and structural influence in molten slag.



The study was supported by the Korea Evaluation Institute of Industrial Technology Project No. 10076604.


  1. 1.
    M. Valdez, K. Prapakorn, A. W. Cramb, S. Seetharaman: Steel Res., 2001, vol. 72, pp. 291-297.CrossRefGoogle Scholar
  2. 2.
    A. Harada, G. Miyano, N. Maruoka, H. Shibata and S. Kitamura: ISIJ int., 2014, vol. 54, pp. 2230-2238.CrossRefGoogle Scholar
  3. 3.
    K. Goto, B. B. Argent and W. E. Lee: J. Am. Ceram. Soc., 1997, vol. 80, pp. 461-71.CrossRefGoogle Scholar
  4. 4.
    S. A. Nightingale and B. J. Monaghan: Metal. Mater. Trans. B, 2008, vol. 39B., pp. 643–48.Google Scholar
  5. 5.
    E. Osborn, R. DeVries, K. Gee and H. Kraner: Trans. AIME, 1954, vol. 200, pp. 33-45.Google Scholar
  6. 6.
    J. Shim and S. Ban-Ya: Tetsu-to-Hagane, 1981, vol. 67, pp. 1735-1744.CrossRefGoogle Scholar
  7. 7.
    H. Suito and R. Inoue: Trans. Iron and Steel Inst. Jpn., 1984, vol. 24, pp. 40-46.CrossRefGoogle Scholar
  8. 8.
    E. Schurmann and I. Kolm: Steel Res., 1986, vol. 57, pp. 7-12.CrossRefGoogle Scholar
  9. 9.
    J. M. Park, C. H. Keum, J. W. Son and Y. K. Shin, Steelmaking Conference Proceedings, 1994, vol. 77, pp. 461-470.Google Scholar
  10. 10.
    J. M. Park: Steelmaking Conference Proceedings, 1996, vol. 79, pp. 165-171.Google Scholar
  11. 11.
    G. Li, T. Hamano and F. Tsukihashi: ISIJ Int., 2005, vol. 45, pp. 12-18.CrossRefGoogle Scholar
  12. 12.
    S. M. Jung, D.-J. Min and C.-H. Rhee: ISIJ Int., 2007, vol. 47, pp. 1718-1722.CrossRefGoogle Scholar
  13. 13.
    S. M. Jung, D.-J. Min and C.-H. Rhee: ISIJ Int., 2007, vol. 47, pp. 1823-1825.CrossRefGoogle Scholar
  14. 14.
    M. K. Cho, J. Cheng, J. H. Park and D. J. Min: ISIJ Int., 2010, vol. 50, pp. 215-221.CrossRefGoogle Scholar
  15. 15.
    M. A. Tayeb, A. N. Assis, S. Sridhar and R. J. Fruehan: Metal. Mater. Trans. B, 2015, vol. 46, pp. 1112-1114.CrossRefGoogle Scholar
  16. 16.
    J. H. Park: J. Am. Ceram. Soc., 2006, vol. 89, pp. 608-615.CrossRefGoogle Scholar
  17. 17.
    Y. J. Kim and D. J. Min: Steel Res. Int., 2012, vol. 83, pp. 852-860.CrossRefGoogle Scholar
  18. 18.
    S.-J. Nam, Y.-B. Kang, S.-M. Jung and Y. Sasaki: ISIJ Int., 2013, vol. 53, pp. 1779-1785.CrossRefGoogle Scholar
  19. 19.
    W. Loewenstein: Am. Mineral., 1954, vol. 39, pp. 92-96.Google Scholar
  20. 20.
    A. Navrotsky, G. Peraudeau, P. McMillan and J.-P. Coutures: Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 2039-2047.CrossRefGoogle Scholar
  21. 21.
    S. H. Risbud, R. J. Kirkpatrick, A. P. Taglialavore and B. Montez: J. Am. Ceram. Soc., 1987, vol. 70, pp. C-10-C-12.Google Scholar
  22. 22.
    C. I. Merzbacher, B. L. Sherriff, J. S. Hartman and W. B. White: J. Non-Cryst. Sol., 1990, vol. 124, pp. 194-206.CrossRefGoogle Scholar
  23. 23.
    B. T. Poe, P. F. McMillan, B. Cote, D. Massiot and J. P. Coutures: J. Am. Ceram. Soc., 1994, vol. 77, pp. 1832- 1838.CrossRefGoogle Scholar
  24. 24.
    J. F. Stebbins and Z. Xu: Nature, 1997, vol. 390, pp. 60-62.CrossRefGoogle Scholar
  25. 25.
    Y. Waseda and J. M. Toguri: The Strucutre and Properties of Oxide Melts, World Scientific, Singapore, 1998, p. 236.CrossRefGoogle Scholar
  26. 26.
    B. Mysen: Eur. J. Mineral., 2003, vol. 15, pp. 781-802.CrossRefGoogle Scholar
  27. 27.
    I. Sohn and D. J. Min: Steel Res. Int., 2012, vol. 83, pp. 611-630.CrossRefGoogle Scholar
  28. 28.
    K. Shimoda, Y. Tobu and M. Hatakeyama: Am. Mineral., 2007, vol. 92, pp. 695-698.CrossRefGoogle Scholar
  29. 29.
    D. R. Neuville, G. S. Henderson, L. Cormier and D. Massiot: Am. Mineral., 2010, vol. 95, pp. 1580-1589.CrossRefGoogle Scholar
  30. 30.
    E. G. Derouane, J. G. Fripiat, R. von Ballmoos: J. Phys. Chem., 1990, vol. 94, pp. 1687-92.CrossRefGoogle Scholar
  31. 31.
    A. G. Pelmenschikov, E. A. Paukshtis, M. O. Edisherashvili, G. M. Zhidomirov: J. Phys. Chem., 1992, vol. 96, pp. 7051-55.CrossRefGoogle Scholar
  32. 32.
    S. K. Lee and J. F. Stebbins: Am. Mineral., 1999, vol. 84, pp. 937-945.CrossRefGoogle Scholar
  33. 33.
    S. K. Lee and J. F. Stebbins: J. Non-Cryst. Sol., 2000, vol. 270, pp. 260-264.CrossRefGoogle Scholar
  34. 34.
    D. R. Neuville, L. Cormier and D. Massiot: Chem. Geol., 2006, vol. 229, pp. 173-185.CrossRefGoogle Scholar
  35. 35.
    K. E. Kelsey, J. R. Allwardt and J. F. Stebbins: J. Non-Cryst. Sol., 2008, vol. 354, pp. 4644-4653.CrossRefGoogle Scholar
  36. 36.
    S. S. Jung and I. Sohn: Environ. Sci. Technol., 2014, vol. 48, pp. 1886-1892.CrossRefGoogle Scholar
  37. 37.
    T. Nakamura, Y. Ueda and J. Toguri: J. Jpn. Inst. Met., 1986, vol. 50, pp. 456-461.CrossRefGoogle Scholar
  38. 38.
    J. Duffy and M. Ingram: J. Amer. Chem. Soc., 1971, vol. 93, pp. 6448-6454.CrossRefGoogle Scholar
  39. 39.
    J. H. Park and D. S. Kim: Metal. Mater. Trans. B, 2005, vol. 36B, pp. 495-502.CrossRefGoogle Scholar
  40. 40.
    D. R. Neuville, L. Cormier and D. Massiot: Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 5071-5079.CrossRefGoogle Scholar
  41. 41.
    J.A. Tossel: Am. Mineral., 1993, vol. 78, pp. 911-920.Google Scholar
  42. 42.
    G. Gibbs, E. Meagher, M. Newton and D. Swanson (1981) Structure and Bonding in Crystal, vol. 1. Academic Press, New York, pp. 195–225.Google Scholar
  43. 43.
    S. K. Lee, H.-I. Kim, E. J. Kim, K. Y. Mun and S. Ryu: J. Phys. Chem. C, 2015, vol. 120, pp. 737-749.CrossRefGoogle Scholar
  44. 44.
    K. C. Mills: ISIJ Int., 1993, vol. 33, pp. 148-155.CrossRefGoogle Scholar
  45. 45.
    C. H. P. Lupis: Chemical Thermodynamics of Materials, Elsevier Science Publishing Co., New York, NY, 1983, pp. 298-312Google Scholar
  46. 46.
    I. H. Jung, S. A. Decterov, A. D. Pelton: J. Phase Equilib. Diff., 2004, vol. 25, pp. 329-45.CrossRefGoogle Scholar
  47. 47.
    H. Ohta and H. Suito: ISIJ Int., 1996, vol. 36, pp. 983-990.CrossRefGoogle Scholar
  48. 48.
    H. Ohta and H. Suito: Metal. Mater. Trans. B, 1998, vol. 29, pp. 119-129.CrossRefGoogle Scholar
  49. 49.
    E. C. Hass, P. G. Mezey, P. J. Plath: J. Mol. Struct. Theochem., 1982, vol. 76, pp. 389-99.CrossRefGoogle Scholar
  50. 50.
    J. Sauer, G. Engelhardt: Z. Zaturforsch., 1982, vol. 37A, pp. 277-79.Google Scholar
  51. 51.
    A. Navrotsky, K. L. Geisinger, P. McMillan, G. V. Gibbs: Phys. Chem. Miner., 1985, vol. 11, pp. 284-98.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Cheol Min Yoon
    • 1
  • Youngjoo Park
    • 1
  • Dong Joon Min
    • 1
    Email author
  1. 1.Department of Material Science and EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations