# Optimization of Quenching Parameters for the Reduction of Titaniferous Magnetite Ore by Lean Grade Coal Using the Taguchi Method and Its Isothermal Kinetic Study

- 66 Downloads

## Abstract

In the present study, a unique method is adopted to achieve higher reducibility of titaniferous magnetite lump ore (TMO). In this method, TMO is initially heated followed by water quenching. The quenching process generates cracks due to thermal shock in the dense TMO lumps, which, in turn, increases the extent of reduction (EOR) using the lean grade coal as a reductant. The optimum combination of parameters found by using Taguchi’s L_{27} orthogonal array (OA) (five factors, three levels) is − 8 + 4 mm of particle size (PS_{1}), 1423 K of quenching temperature (*Q*temp_{2}), 15 minutes of quenching time (*Q*time_{3}), 3 times the number of quenching {(No. of *Q*)_{3}}, and 120 minutes of reduction time (*R*time_{3}) at fixed reduction temperature of 1473 K. At optimized levels of the parameters, 92.39 pct reduction is achieved. Isothermal reduction kinetics of the quenched TMO lumps at the optimized condition reveals mixed controlled mechanisms [initially contracting geometry (CG3) followed by diffusion (D3)]. Activation energies calculated are 69.895 KJ/mole for CG3 and 39.084 KJ/mole for D3.

## Notes

### Acknowledgments

One of the authors (BKS) acknowledges the financial support under the scheme “UGC-BSR Research Fellowship in Science for Meritorious Students, 2012–2013 (7-88/2007 (BSR)).” The authors also acknowledge Dr. Supratim Biswas, Postdoctoral Research Fellow, Department of Chemical Engineering, University of Cape Town (Cape Town, South Africa), for his valuable suggestions and assistance.

## References

- 1.S. Chen and M. Chu:
*Int. J. Miner. Metall. Mater.*, 2014, vol. 21, pp. 225–33.CrossRefGoogle Scholar - 2.T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu:
*Metall. Mater. Trans. B,*2013, vol. 44B, pp. 252–60.CrossRefGoogle Scholar - 3.X.G. Si, X.G. Lu, C.W. Li, C.H. Li, and W.Z. Ding:
*Int. J. Miner. Metall. Mater.*, 2012, vol. 19, pp. 384–90CrossRefGoogle Scholar - 4.P.C. Pistorius and C. Coetzee:
*Metall. Mater. Trans. B,*2003, vol. 34B, pp. 581–88.CrossRefGoogle Scholar - 5.C.S. Kucukkaragoz and R.H. Eric:
*Miner. Eng.*, 2006, vol. 19, pp. 334–37.CrossRefGoogle Scholar - 6.A. Andrew, Y. Li, G.Q. Zhang, and O. Oleg:
*Int. J. Miner. Processing,*2011, vol. 100, pp. 166–71.CrossRefGoogle Scholar - 7.N. El-Hazek, T.A. Lasheen, R. El-Sheikh, and S.A. Zaki:
*Hydrometallurgy,*2007, vol. 87, pp. 45–50.CrossRefGoogle Scholar - 8.Haoyan Sun, Jingsong Wang, Yihua Han, Xuefeng She, and Qing Guo Xue:
*Int. J. Miner. Processing,*2013, vol. 125, pp. 122–28.CrossRefGoogle Scholar - 9.S. Samanta, M.C. Goswami, T.K. Baidya, S. Mukherjee, and R. Dey:
*Int. J. Miner. Metall. Mater.*, 2013, vol. 20, pp. 917–24CrossRefGoogle Scholar - 10.V.E. Roshchin, A.V. Asanov, and A.V. Roshchin:
*Russ. Met. (Metally),*2010, vol. 2011, pp. 15–25.Google Scholar - 11.R.H. Nafziger and R.R. Jordan:
*Metall. Mater. Trans. B,*1983, vol. 14B, pp. 55–62.CrossRefGoogle Scholar - 12.M.M. Manamela and P.C. Pistorius:
*J. S. Afr. Inst. Min. Metall.*, 2005, vol. 105, pp. 183–86.Google Scholar - 13.E. Park and O. Ostrovski:
*Iron Steel Inst. Jpn. Int.*, 2003, vol. 43, pp. 1316–25.CrossRefGoogle Scholar - 14.S. Samanta, S. Mukherjee, and R. Dey:
*Trans. Nonferrous Met. Soc. China,*2014, vol. 24, pp. 2976–85.CrossRefGoogle Scholar - 15.DB Rao and M. Rigaud:
*High Temp. Sci.*1974, vol. 64, pp. 323–41.Google Scholar - 16.SK Gupta, V. Rajakumar, and P. Grieveson:
*Metall. Trans. B,*1991, vol. 22B, pp. 711–16CrossRefGoogle Scholar - 17.Ammar Khawam and Douglas R. Flanagan:
*J. Phys. Chem. B,*2006, vol. 110, pp. 17315–17328.CrossRefGoogle Scholar - 18.C.F. Dickinson and G.R. Heal:
*Thermochimica Acta,*1999, vols. 340–341, pp. 89–103.CrossRefGoogle Scholar - 19.R. Sah and S.K. Dutta:
*Trans. Ind. Inst. Met.*, 2011, vol. 64, pp. 583–91.CrossRefGoogle Scholar - 20.Abhishek Lahiri and Animesh Jha:
*Metall. Mater. Trans. B,*2007, vol. 38B, pp. 939–48.CrossRefGoogle Scholar - 21.Z. Jian-liang, X. Xiang-dong, C. Ming-ming, J. Ke-Xin, W. Chun-long, and R. Shan:
*J. Iron Steel Res. Int.*, 2013, vol. 20, pp. 01–07.CrossRefGoogle Scholar - 22.K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, and S.B. Lalvani:
*Fuel Process. Technol.*, 2004, vol. 86, pp. 33–47.CrossRefGoogle Scholar - 23.A. Ghosh:
*Trans. Ind. Inst. Met.*, 2013, vol. 66, pp. 71–77.CrossRefGoogle Scholar - 24.Tung-Hsu Hou, Chi-Hung Su, and Wang-Lin Liu:
*Powder Technol.*, 2007, vol. 173, pp. 153–62.CrossRefGoogle Scholar - 25.Ilhan Asiltürk and Süleyman Neseli:
*Measurement,*2012, vol. 45, pp. 785–94.CrossRefGoogle Scholar - 26.R. Jeyapaul, P. Shahabudeen, and K. Krishnaiah:
*Int. J. Adv. Manuf. Technol.*, 2005, vol. 26, pp. 1331–37.CrossRefGoogle Scholar - 27.N Pandey, K. Murugesan, and H.R. Thomas:
*Appl. Energy,*2017, vol. 190, pp. 421–38.CrossRefGoogle Scholar - 28.AH Sevinç, MY Durgun, and M Eken:
*Constr. Building Mater.*, 2017, vol. 135, pp. 343–51.CrossRefGoogle Scholar - 29.B.N. Akhgar, M. Pazouki, M. Ranjbar, A. Hosseinna, and R. Salarian:
*Chem. Eng. Res. Design,*2012, vol. 90, pp. 220–28.CrossRefGoogle Scholar - 30.Mustafa Günay and Emre Yücel:
*Measurement,*2013, vol. 46, pp. 913–19.CrossRefGoogle Scholar - 31.S. Mondal, B. Paul, V. Kumar, D.K. Singh, and J.K. Chakravartty:
*Separ. Purif. Technol.*, 2015, vol. 156, pp. 827–34.CrossRefGoogle Scholar - 32.BK Sarkar, S Samanta, R Dey, and GC Das:
*Int. J. Miner. Processing,*2016, vol. 152, pp. 36–45.CrossRefGoogle Scholar - 33.Nikhil Kumar, Manidipto Mukherjee, and Asish Bandyopadhyay:
*Opt. Laser Technol.*, 2017, vol. 88, pp. 24–39CrossRefGoogle Scholar - 34.Nikhil Kumar, Ramesh Rudrapati, and Pradip Kumar Pal:
*Prof. Mater. Sci.*, 2014, vol. 5, pp. 2178–87.CrossRefGoogle Scholar - 35.E.M. Anawa and A.G. Olabi:
*Opt. Laser Technol.*, 2008, vol. 40, pp. 379–88.CrossRefGoogle Scholar