Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 1808–1821 | Cite as

Formation of Titanium Sulfide from Titanium Oxycarbonitride by CS2 Gas

  • Eltefat Ahmadi
  • Yuta Yashima
  • Ryosuke O. Suzuki
  • Sheikh Abdul Rezan
Article

Abstract

Previously this group reported that a good quality titanium metal powder can be produced from titanium sulfides by electrochemical OS process. In this study, the sulfurization procedure was examined to synthesize titanium sulfide from titanium oxycarbonitride by CS2 gas. The experiments were carried out in the temperature range of 1173 K to 1523 K (900 °C to 1250 °C) in a tube reactor with continuously flowing argon (Ar) as carrier gas of CS2. The formation of titanium sulfide phases from the commercial TiN, TiC, and TiO powders was studied as the initial step. Then, TiO0.02C0.13N0.85 coming from ilmenite was sulfurized to prepare single phase of titanium sulfide. The products were characterized by X-ray diffraction, and the morphology of the sulfides was rigorously investigated, and the sulfur, oxygen, and carbon contents in the products were analyzed. The process was remarkably dependent on the temperature and time. TiN and TiO0.02C0.13N0.85 powders could be fully converted to the single phase of Ti2.45S4 (Ti2+xS4) at 1473 K (1200 °C) in 3.6 ks. The maximum weight gain of TiN sample was ~ 55.3 pct indicating a full conversion of TiN to Ti2S3 phase. The carbon and oxygen contents in this sulfide prepared from the oxycarbonitride were about 1.8 wt pct C and 1.4 wt pct O, respectively. Therefore, the titanium sulfide could be a promising feedstock for the production of commercial grade titanium powder.

Notes

Acknowledgments

The financial supports from Grant-in-Aid for Scientific Research (B) Number 17H03434, the Center for Engineering Education Development (CEED) of Hokkaido University, Japan Student Services Organization (JASSO) Scholarship and Universiti Sains Malaysia (USM) Fellowship (APEX1002/JHEA/ATSG4001) are gratefully acknowledged. Titanium oxycarbonitride synthesis was made possible by support from USM through the Research University Individual (RUI) Grant (No. 1001/PBAHAN/814273).

References

  1. 1.
    H. Okamoto: Desk Handbook: Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 2000, p.742Google Scholar
  2. 2.
    B. Predel: S-Ti (Sulfur-Titanium), Landolt-Börnstein—Group IV Physical Chemistry 5 J (Pu-Re – Zn-Zr), O. Madelung, ed., Springer, Berlin, 1998, pp. 1–4.Google Scholar
  3. 3.
    L.E. Conroy and K.C. Park: Inorg. Chem., 1968, vol. 7, pp. 459–463.CrossRefGoogle Scholar
  4. 4.
    M. Ohta, S. Satoh, T. Kuzuya, S. Hirai, M. Kunii and A. Yamamoto: Acta Mater., 2012, vol. 60, pp. 7232-7240.CrossRefGoogle Scholar
  5. 5.
    T. Umebayashi, T. Yamaki, H. Itoh and K. Asai: Appl. Phys. Lett., 2002, vol. 81, pp. 454-456.CrossRefGoogle Scholar
  6. 6.
    A.L. Let, D.E. Mainwaring, C. Rix and P. Murugaraj: J. Non-Cryst. Solids, 2008, vol. 354, pp. 1801-1807.CrossRefGoogle Scholar
  7. 7.
    N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi and R.O. Suzuki: Mater. Trans., 2017, vol. 58, pp. 367-370.CrossRefGoogle Scholar
  8. 8.
    W. Kroll: Trans. Electrochem. Soc., 1940, vol. 78, pp. 35-47.CrossRefGoogle Scholar
  9. 9.
    C. Doblin, A. Chryss and A. Monch: Key Eng. Mater., 2012, vol. 520, pp. 95-100.CrossRefGoogle Scholar
  10. 10.
    T.N. Deura, T. Matsunaga, R.O. Suzuki, K. Ono and M. Wakino: Metal. Mater. Trans. B, 1998, vol. 29B, pp. 1167-1174.CrossRefGoogle Scholar
  11. 11.
    R.O. Suzuki, K. Ono and K. Teranuma: Metal. Mater. Trans. B, 2003, vol. 34B, pp. 287–295.CrossRefGoogle Scholar
  12. 12.
    R.O. Suzuki: J. Phys. Chem. Solids, 2005, vol. 66, pp. 461-465.CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T. Zhang, P. Sun, M.L. Free and J. Guo: Chem. Eng. J., 2016, vol. 286, pp. 517-527.CrossRefGoogle Scholar
  14. 14.
    R.O. Suzuki, T. Matsunaga, K. Ono, T.N. Harada and T.N. Deura: Metal. Mater. Trans. B, 1999, vol. 30B, pp. 403-410.CrossRefGoogle Scholar
  15. 15.
    K. Ono and R.O. Suzuki: JOM, 2002, vol. 54, pp. 59-61.CrossRefGoogle Scholar
  16. 16.
    K. Oshima, M. Yokoyama, H. Hinode, M. Wakihara and M. Taniguchi: J. Solid State Chem., 1986, 65, pp. 392-395.CrossRefGoogle Scholar
  17. 17.
    M.S. Whittingham: Chem. Rev., 2004, vol. 104, pp. 4271–4302.CrossRefGoogle Scholar
  18. 18.
    E.J. Frazer and S. Phang: J. Power Sources, 1981, vol. 6, pp. 307-317.CrossRefGoogle Scholar
  19. 19.
    J. Ma, H. Jin, X. Liu, M.E. Fleet, J. Li, X. Cao and S. Feng: Cryst. Growth Des., 2008, vol. 8, pp. 4460–4464.CrossRefGoogle Scholar
  20. 20.
    M.A. Rhamdhani, S. Ahmad, M.I. Pownceby, W.J. Bruckard, and S. Harjanto, Miner. Eng., 2018, vol. 121, pp. 55-65CrossRefGoogle Scholar
  21. 21.
    E. Ahmadi, A. Fauzi, H. Hussin, N. Baharun, K.S. Ariffin and S.A. Rezan: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 444-454.CrossRefGoogle Scholar
  22. 22.
    E. Ahmadi, S.A. Rezan, N. Baharun, S. Ramakrishnan, A. Fauzi and G. Zhang: Metal. Mater. Trans. B, 2017, vol. 48B, pp. 2354–2366.CrossRefGoogle Scholar
  23. 23.
    S.A. Rezan, G. Zhang and O. Ostrovski: ISIJ Int., 2012, vol. 52, pp. 363–368.CrossRefGoogle Scholar
  24. 24.
    Q. Wang, J. Song, J. Wu, S. Jiao, J. Hou and H. Zhu: Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 8086-8091.CrossRefGoogle Scholar
  25. 25.
    A. Roine (2002) Outokumpu HSC Chemistry for Windows, Chemical reaction and equilibrium software with extensive thermochemical database. Outokumpu Research Oy, PoriGoogle Scholar
  26. 26.
    Y.-R. Luo (2007) Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, pp. 667–687.CrossRefGoogle Scholar
  27. 27.
    M. Onoda, M. Saeki and I. Kawada: Z. Anorg. Allg. Chem., 1979, vol. 457, pp. 62-74.CrossRefGoogle Scholar
  28. 28.
    L.-J. Norrby and H.F. Franzen: J. Solid State Chem., 1970, vol. 2, pp. 36-41.CrossRefGoogle Scholar
  29. 29.
    H. Yuan, J. Zhang, R. Yu and Q. Su: J. Rare Earths, 2009, vol. 27, pp. 308-311.CrossRefGoogle Scholar
  30. 30.
    O. Schevciw and W.B. White: Mater. Res. Bull., 1983, vol. 18, pp. 1059-1068.CrossRefGoogle Scholar
  31. 31.
    NIST X-ray Photoelectron Spectroscopy Database, Version 4.1, National Institute of Standards and Technology, Gaithersburg, 2012, http://srdata.nist.gov/xps/.
  32. 32.
    E. Ahmadi, S.A. Hamid, H.B. Hussin, S.R. Baharun, K.S.B. Ariffin and M.A. Fauzi: INROADS Int. J. Jaipur Natl Univ., 2016, vol. 5, pp. 11-16.CrossRefGoogle Scholar
  33. 33.
    A. Ryabtsev, B. Friedrich, F. Leokha, S. Ratiev, O. Snizhko, P. Spiess, and S. Radwitz: Proceedings of the 2013 International Symposium on Liquid Metal Processing and Casting, Wiley Inc., New York, 2013, pp. 133–36.Google Scholar
  34. 34.
    S.K. Sadrnezhaad, E. Ahmadi and M. Malekzadeh: Mater. Sci. Tech., 2009, vol. 25, pp. 699–706.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Division of Materials Science and Engineering, Faculty of EngineeringHokkaido UniversityKita-ku, SapporoJapan
  2. 2.School of Materials & Mineral Resources EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations