Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 1560–1567 | Cite as

Effects of Static Recrystallization and Precipitation on Mechanical Properties of 00Cr12 Ferritic Stainless Steel

  • Yi Shao
  • Chenxi Liu
  • Tengxiao Yue
  • Yongchang Liu
  • Zesheng Yan
  • Huijun Li
Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • 98 Downloads
Part of the following topical collections:
  1. International Metallurgical Processes Workshop for Young Scholars (IMPROWYS 2017)

Abstract

The 00Cr12 ferritic stainless steel samples were isothermally held at different temperatures in the range of 700 °C to 1000 °C to investigate the effect of static recrystallization and precipitation on mechanical properties, such as microhardness, tensile strength, and yield strength. The results show that the formation of the fine recrystallized grain, as well as precipitation, coarsening, and dissolution of the second-phase particles, influences the mechanical properties remarkably. The fine recrystallized grain can provide a positive grain boundary-strengthening effect in the sample under a relatively high holding temperature. Coarsening and dissolution of M23C6 result in partial depletion of precipitate hardening. In contrast, the size and number density of MX particles are almost constant, regardless of the holding temperature; therefore, it can provide a better precipitation-hardening effect.

Notes

Acknowledgments

The authors are grateful to the China National Funds for Distinguished Young Scientists (Grant No. 51325401), the National Magnetic Confinement Fusion Energy Research Project (Grant No. 2015GB119001), and the National Natural Science Foundation of China (Grant Nos. 51501126, 51474156 and U1660201) for grant and financial support.

References

  1. 1.
    Lu Q, van der Zwaag S, Xu W: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1577-81.CrossRefGoogle Scholar
  2. 2.
    Cashell K, Baddoo N: Thin-Walled Structures, 2014, vol. 83, pp. 169-81.CrossRefGoogle Scholar
  3. 3.
    Shaigan N, Qu W, Ivey DG, Chen W: J. Power Sources, 2010, vol. 195, pp. 1529-42.CrossRefGoogle Scholar
  4. 4.
    Moteshakker A, Danaee I: J. Mater. Sci. Technol., 2016, vol. 32, pp. 282-90.CrossRefGoogle Scholar
  5. 5.
    Fujita N, Ohmura K, Yamamoto A: Mater. Sci. Eng. A, 2003, vol. 351, pp. 272-81.CrossRefGoogle Scholar
  6. 6.
    Wang L-x, Song C-j, Sun F-m, Li L-j, Zhai Q-j: Mater. Des., 2009, vol. 30, pp. 49-56.CrossRefGoogle Scholar
  7. 7.
    Hu X, Du Y, Yan D, Rong L: J. Mater. Sci. Technol., 2017,  https://doi.org/10.1016/j.jmst.2017.05.007.Google Scholar
  8. 8.
    Ma L, Hu S, Shen J, Han J, Zhu Z: J. Mater. Sci. Technol., 2016, vol. 32, pp. 552-60.CrossRefGoogle Scholar
  9. 9.
    Zheng H, Ye X, Jiang L, Wang B, Liu Z, Wang G: Mater. Des., 2010, vol. 31, pp. 4836-41.CrossRefGoogle Scholar
  10. 10.
    Taban E, Deleu E, Dhooge A, Kaluc E: Mater. Des., 2009, vol. 30, pp. 1193-200.CrossRefGoogle Scholar
  11. 11.
    Jahja A, Effendi N, Dani M: Atom Indonesia, 2012, vol. 33, pp. 79-95.CrossRefGoogle Scholar
  12. 12.
    Yazawa Y, Ozaki Y, Kato Y, Furukimi O: JSAE review, 2003, vol. 24, pp. 483-8.CrossRefGoogle Scholar
  13. 13.
    Park S, Kim K, Lee Y, Park C: ISIJ Int., 2002, vol. 42, pp. 100-5.CrossRefGoogle Scholar
  14. 14.
    Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, et al: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219-74.CrossRefGoogle Scholar
  15. 15.
    Ebrahimi GR, Keshmiri H, Maldad AR, Momeni A: J. Mater. Sci. Technol., 2012, vol. 28, pp. 467-73.CrossRefGoogle Scholar
  16. 16.
    Huh MY, Engler O: Mater. Sci. Eng. A, 2001, vol. 308, pp. 74-87.CrossRefGoogle Scholar
  17. 17.
    Lo KH, Shek CH, Lai JKL: Mater. Sci. Eng. R, 2009, vol. 65, pp. 39-104.CrossRefGoogle Scholar
  18. 18.
    Zhou Y, Liu C, Liu Y, Guo Q, Li H: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 283-93.CrossRefGoogle Scholar
  19. 19.
    Sim GM, Ahn JC, Hong SC, Lee KJ, Lee KS: Mater. Sci. Eng. A, 2005, vol. 396, pp. 159-65.CrossRefGoogle Scholar
  20. 20.
    Liu F, Sommer F, Bos C, Mittemeijer EJ: Int. Mater. Rev., 2007, vol. 52, pp. 193-212.CrossRefGoogle Scholar
  21. 21.
    Shan Y, Luo X, Hu X, Liu S: J. Mater. Sci. Technol., 2011, vol. 27, pp. 352-8.CrossRefGoogle Scholar
  22. 22.
    Ennis P, Czyrska-Filemonowicz A: Sadhana, 2003, vol. 28, pp. 709-30.CrossRefGoogle Scholar
  23. 23.
    Abe F: Sci. Technol. Adv. Mater., 2008, vol. 9, 013002.CrossRefGoogle Scholar
  24. 24.
    Maalekian M, Radis R, Militzer M, Moreau A, Poole WJ: Acta Mater., 2012, vol. 60, pp. 1015-26.CrossRefGoogle Scholar
  25. 25.
    Krauss G: Mater. Sci. Eng. A, 1999, vol. 273, pp. 40-57.CrossRefGoogle Scholar
  26. 26.
    Norström L-Å: Metal Sci., 1976, vol. 10, pp. 429-36.CrossRefGoogle Scholar
  27. 27.
    Dingley DJ, McLean D: Acta Metall., 1967, vol. 15, pp. 885-901.CrossRefGoogle Scholar
  28. 28.
    Maruyama K, Sawada K, Koike J-i: ISIJ Int. (Japan), 2001, vol. 41, pp. 641-53.CrossRefGoogle Scholar
  29. 29.
    A.A. Gorni: Steel Forming and Heat Treating Handbook, São Vicente, Brazil, 2011.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science & EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations