Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 1632–1643 | Cite as

Fluid Force-Induced Detachment Criteria for Nonmetallic Inclusions Adhered to a Refractory/Molten Steel Interface

  • Uxia Dieguez Salgado
  • Christian Weiß
  • Susanne K. Michelic
  • Christian Bernhard


Since nonmetallic inclusions (NMIs) in steel cannot be completely avoided, a greater understanding of their development and evolution during the steelmaking process is required. In particular, this includes the adhesion of microinclusions to the refractory/steel interface in the flow control system between the tundish and the mold. This phenomenon, commonly referred to as clogging, causes losses in productivity and product quality. Inclusions transported from the bulk melt to the boundary layer may adhere to the refractory/steel interface due to formation of a fluid cavity. A detailed model was derived for the detachment of NMIs adhering to a nozzle wall and is based on the local hydrodynamic conditions combined with the specific interfacial properties in the system consisting of the inclusions, the refractories, and the steel. The model is evaluated for three different application-oriented cases. This study has been focused on providing a better understanding of fluid flow in the near-wall region in order to reduce clogging during steelmaking.



The financial support by K1-Met GmbH is gratefully acknowledged. K1-Met is a member of COMET—Competence Center for Excellent Technologies and is financially supported by the Austrian ministries BMVIT and BMVITJ; the provinces of Upper Austria, Styria, and Tyrol; SFG; and Tiroler Stiftung. COMET is managed by FFG (Austrian research promotion agency).


  1. 1.
    V. Vermeulen, B. Coletti, B. Blanpain, P. Wollants, and J. Vleugels: ISIJ Int., 2002, vol. 42, pp. 1234–40.CrossRefGoogle Scholar
  2. 2.
    K.G. Rackers and B.G. Thomas: Iron and Steel Society, Warrendale, PA, 1995, vol. 78, pp. 723–34.Google Scholar
  3. 3.
    M. Nadif, M. Burty, H. Soulard, M. Boher, C. Pusse, J. Lehmann, and F. Meyer: IISI Study on Clean Steel, 1st ed., IRSID, Acerlor, France, 2004, pp. 87–135.Google Scholar
  4. 4.
    F.G. Wilson, M.J. Heeson, and J.D.W. Rawson: Tech. Steel Res., 1988, pp. 1–5.Google Scholar
  5. 5.
    S.N. Singh: Metall.Trans., 1974, vol. 5, pp. 2165–78.CrossRefGoogle Scholar
  6. 6.
    S. Ogibayashi: Taikabutsu Overseas, 1995, vol. 15, pp. 3–13.Google Scholar
  7. 7.
    B.G. Thomas, A. Dennisov, and H. Bai: ISS 80th Steelmak. Conf., 1997, pp. 375–84.Google Scholar
  8. 8.
    B.F. Thomas and H. Bai: Iron Steel Soc., 2001, vol. 18, pp. 895–912.Google Scholar
  9. 9.
    E.S. Szekeres: IV Int. Conf. on Clean Steel, 1992, pp. 756–76.Google Scholar
  10. 10.
    Y.K. Shin, I.R. Lee, D.S. Kim, S.K. Kim, and K.S. Oh: Ironmak. Steelmak., 1988, vol. 15, pp. 143–49.Google Scholar
  11. 11.
    E. Roos, A. Karasev, and P.G. Jönsson: Steel Res. Int., 2015, vol. 86, pp. 1279–88.CrossRefGoogle Scholar
  12. 12.
    J. Poirier, B. Thillou, M.A. Guiban, and G. Provost: Steelmak. Conf. Proc., 1995, pp. 451–56.Google Scholar
  13. 13.
    R. Tuttle, K.D. Peaslee, and J.D. Smith: AISTech Conf. Proc., 2002, pp. 1–11.Google Scholar
  14. 14.
    M. Suzuki, Y. Yamaoka, N. Kubo, and M. Suzuki: ISIJ Int., 2002, vol. 42, pp. 248–56.CrossRefGoogle Scholar
  15. 15.
    S. Dawson: Ironmak. Steelmak., 1990, vol. 17, pp. 33–42.Google Scholar
  16. 16.
    H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 707–22.CrossRefGoogle Scholar
  17. 17.
    H. Bai and B.G. Thomas: 83rd Steelmak. Conf. Proc., 2000, pp. 183–97.Google Scholar
  18. 18.
    K. Sasai and Y. Mizukami: ISIJ Int., 1995, vol. 35, pp. 26–33.CrossRefGoogle Scholar
  19. 19.
    Y. Fukuda, Y. Ueshima, and S. Mizoguchi: ISIJ Int., 1992, vol. 32, pp. 164–68.CrossRefGoogle Scholar
  20. 20.
    S. Ramachandran, K.D. Peaslee, and J.D. Smith: Steelmak. Conf. Proc., 2001, 729–34.Google Scholar
  21. 21.
    N. Kasai, M. Kawasaki, Y. Hayashi, and H. Kawai: Taikabutsu Overseas, 1991, vol. 11, pp. 22–33.Google Scholar
  22. 22.
    H. Shikano, T. Harada, S. Iitisuka, and K. Shin-Ichirou: Taikabutsu Overseas, 1991, vol. 11, pp. 10–21.Google Scholar
  23. 23.
    L. Zhang: J. Iron Steel Res. Int., 2006, vol. 13, pp. 1–8.Google Scholar
  24. 24.
    S. Liu, S. Niu, M. Liang, C. Li, X. Zuo, L. Zhang, and X. Wang: AISTech Conf. Proc., 2007, vol. 10, pp. 1–10.Google Scholar
  25. 25.
    G.T. Moulden and R. Sabol: Steelmak. Conf. Proc., 2000, pp. 161–66.Google Scholar
  26. 26.
    V. Brabie: ISIJ Int., 1996, vol. 36, pp. 109–12.CrossRefGoogle Scholar
  27. 27.
    W. Höller: Veitsch-Radex Rundschau, 1998, vol. 2, pp. 13–22.Google Scholar
  28. 28.
    M. Nakamura, T. Yamamura, O. Nomura, R. Nakamura, and E. Iida: Taikabutsu Overseas, 1997, vol. 17, pp. 34–40.Google Scholar
  29. 29.
    J. Lee, S. Kim, M. Kang, and Y. Kang: ECCC Conf. Proc., 2017, pp. 1–6.Google Scholar
  30. 30.
    J. Szekely and S.T. Dinovo: Metall. Trans., 1974, vol. 5, pp. 747–54.CrossRefGoogle Scholar
  31. 31.
    G.C. Duderstadt, R.K. Iyengar, and J.M. Matesa: J. Met., 1968, vol. 4, pp. 89–94.Google Scholar
  32. 32.
    J.W. Farrell and D.C. Hilty: Electr. Furn. Conf. Proc., 1971, pp. 31–46.Google Scholar
  33. 33.
    M. Andersson and O. Wijk: 6th Int. Conf. Refin. Processes, 1992, pp. 175–209.Google Scholar
  34. 34.
    K. Sasai and Y. Mizukami: ISIJ Int., 2001, vol. 41, pp. 1331–39.CrossRefGoogle Scholar
  35. 35.
    K. Uemura, M. Takahashi, S. Koyama, and M. Nitta: ISIJ Int., 1992, vol. 32, pp. 150–56.CrossRefGoogle Scholar
  36. 36.
    E. Kawecka-Cebula, Z. Kalicka, and J. Wypartowicz: Arch. Metall. Mater., 2006, vol. 51, pp. 261–68.Google Scholar
  37. 37.
    C.G. Aneziris, C. Schroeder, M. Emmel, G. Schmidt, H.P. Heller, and H. Berek: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 954–68.CrossRefGoogle Scholar
  38. 38.
    K. Sasai: ISIJ Int., 2014, vol. 54, pp. 2780–89.CrossRefGoogle Scholar
  39. 39.
    T. Mizoguchi, Y. Ueshima, M. Sugiyama, and K. Mizukami: ISIJ Int., 2013, vol. 53, pp. 639–47.CrossRefGoogle Scholar
  40. 40.
    Y. Ueshima, T. Mizoguchi, M. Sugiyama, and K. Mizukami: 5th Int. Congr. Sci. Technol. Steelmak., Dresden, Germany, 2012.Google Scholar
  41. 41.
    L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, and M. Guo: ICS Conf. Proc., 2015, pp. 731–36.Google Scholar
  42. 42.
    L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, and M. Guo: ISIJ Int., 2016, vol. 56, pp. 926–35.CrossRefGoogle Scholar
  43. 43.
    C. Xuan, A.V. Karasev, P.G. Jönsson, and K. Nakajima: Steel Res. Int., 2017, vol. 88, pp. 911–20.CrossRefGoogle Scholar
  44. 44.
    J. Poirier, D. Verrelle, B. Thillou, G. Provost, C. Taffin, and P. Tssot: UNITECR Conf. Proc., 1991, pp. 226–29.Google Scholar
  45. 45.
    A.W. Cramb and I. Jimbo: W.O. Philbrook Meml. Symp. Conf. Proc., 1988, pp. 43–55.Google Scholar
  46. 46.
    P.M. Benson, Q.K. Robinson, and H.K. Part: Steelmak. Conf. Proc., 1993, pp. 533–39.Google Scholar
  47. 47.
    E. Lührsen, A. Ott, W. Porbel, J. Piret, R. Ruddlestone, and B. Short: 1st ECCC Conf. Proc., 1991, pp. 137–57.Google Scholar
  48. 48.
    R. Tsujino, A. Tanaka, A. Imamura, D. Takahashi, and S. Mizoguchi: ISIJ Int., 1994, vol. 34, pp. 853–58.CrossRefGoogle Scholar
  49. 49.
    T. Nakamura, T. Aoki, H. Okumura, and Y. Kondo: Taikabutsu Overseas, 1991, vol. 11, pp. 38–40.Google Scholar
  50. 50.
    K. Oguri, M. Ando, T. Muroi, T. Aoki, and H. Okumura: UNITCER93, 1993, pp. 1119–29.Google Scholar
  51. 51.
    T. Aoki, T. Nakamura, H. Ozeki, and A. Elksnitis: Steelmak. Conf. Proc., 1991, pp. 357–60.Google Scholar
  52. 52.
    F. Ohno, T. Muroi, and K. Oguri: J. Tech. Assoc. Refract., 2002, vol. 22, pp. 63–66.Google Scholar
  53. 53.
    W. Zhong, W. Li, and X. Zhong: Adv. Refract. Metall. Ind. II, 1996, pp. 441–52.Google Scholar
  54. 54.
    N. Tsukamoto, Y. Kurashina, and K. Yanagawa: Taikabutsu Overseas, 1995, vol. 15, pp. 43–49.Google Scholar
  55. 55.
    T. Kawamura, S. Niwa, E. Hasebe, and T. Simoda: UNITCER93 Conf. Proc., 1993, pp. 1–13.Google Scholar
  56. 56.
    S. Yokoya, S. Takagi, H. Souma, M. Iguchi, Y. Asako, and S. Hara: ISIJ Int., 1998, vol. 38, pp. 1086–92.CrossRefGoogle Scholar
  57. 57.
    G. Hackl, G. Nitzl, D. Warrington, A. Westendorp, and R. Bogert: 7th ECCC Conf. Proc., 2011, pp. 1–7.Google Scholar
  58. 58.
    A.R. McKague, R. Enger, M.A. Suer, D.J. Wolf, M.D. Garbowsky, and L.E. Reed: Iron Steelmak., 1998, vol. 25.Google Scholar
  59. 59.
    J.J. Vitlip and J.E. Roush: Steelmak. Conf. Proc., 2001, pp. 33–40.Google Scholar
  60. 60.
    C.E. Cicutti, J. Madías, and J.C. González: Ironmak. Steelmak., 1997, vol. 24, pp. 155–59.Google Scholar
  61. 61.
    C. Cicutti, M. Valdez, T. Pérez, R. Ares, R. Panelli, and J. Petroni: Steelmak. Conf. Proc., 2001, pp. 871–82.Google Scholar
  62. 62.
    N. Bannenber: Steelmak. Conf. Proc., 1995, pp. 457–63.Google Scholar
  63. 63.
    G.M. Faulring, J.W. Farrell, and D.C. Hilty: Contin. Cast. Conf. Proc., 1995, vol. 1, pp. 57–66.Google Scholar
  64. 64.
    M.K. Sardar, S. Mukhopadhyay, U.K. Bandopadhyay, and S.K. Dhua: Steel Res., 2007, vol. 78, pp. 136–40.CrossRefGoogle Scholar
  65. 65.
    M. Alavanja, R.T. Gass, R.W. Kittridge, and H.T. Tsai: Steelmak. Conf. Proc., 1995, pp. 415–26.Google Scholar
  66. 66.
    J. Hartmüller and S. Ripperger: F & S, 2014, vol. 28, pp. 274–77.Google Scholar
  67. 67.
    G. Lian, C. Thornton, and M.J. Adams: J. Coll. Interface Sci., 1993, vol. 161, pp. 138–47.CrossRefGoogle Scholar
  68. 68.
    R.A. Fisher: J. Agri. Sci., 1926, vol. 16, pp. 492–505.CrossRefGoogle Scholar
  69. 69.
    D. Rossetti and S.J.R. Simons: Powder Technol., 2003, vol. 130, pp. 49–55.CrossRefGoogle Scholar
  70. 70.
    A. Gladkyy and R. Schwarze: Granular Matter, 2014, vol. 16, pp. 911–20.CrossRefGoogle Scholar
  71. 71.
    H.P. Zhu, Z.Y. Zhou, R.Y. Yang, and A.B. Yu: Chem. Eng. Sci., 2007, vol. 62, pp. 3378–96.CrossRefGoogle Scholar
  72. 72.
    M.A. Fortes: Can. J. Chem., 1982, vol. 60, pp. 2889–95.CrossRefGoogle Scholar
  73. 73.
    S. Seetharaman: Fundamentals of Metallurgy, 1st ed., CRC Press, New York, NY, 2005.CrossRefGoogle Scholar
  74. 74.
    J.N. Israelachvili: Intermolecular and Surface Forces, 2nd ed., Academic Press, New York, NY, 2011.Google Scholar
  75. 75.
    R. Clift, J.R. Grace, and M.E. Weber: Blubbles, Drops, and Particles, 1st ed., Dover publications, New York, 1978.Google Scholar
  76. 76.
    J.W. Cleaver and B. Yates: J. Coll. Interface Sci., 1973, vol. 44, pp. 464–74.CrossRefGoogle Scholar
  77. 77.
    R.J. Garde and K.G. Ranga Raju: 3rd ed., Taylor & Francis, 2000.Google Scholar
  78. 78.
    D. Leighton and A. Acrivos: Z. Angew. Math. Phys., 1985, vol. 36, pp. 174–78.CrossRefGoogle Scholar
  79. 79.
    T. Hibiki and M. Ishii: Chem. Eng. Sci., 2007, vol. 62, pp. 6457–74.CrossRefGoogle Scholar
  80. 80.
    L. Shi and D.J. Bayless: Powder Technol., 2007, vol. 173, pp. 29–37.CrossRefGoogle Scholar
  81. 81.
    C. Toulouse, A. Pack, A. Ender, and S. Petry: 7th ECCC Conf. Proc., 2011, pp. 1–8.Google Scholar
  82. 82.
    K. Asano, A. Ishii, and K. Kasai: UNITECR Conf. Proc., 1991, pp. 229–32.Google Scholar
  83. 83.
    L. Luyckx and S. Robinson: McLean Symp. Proc., 1998, pp. 111–26.Google Scholar
  84. 84.
    R. Rastogi and A.W. Cramb: Steelmak. Conf. Proc., 2001, pp. 789–829.Google Scholar
  85. 85.
    D. Janis, A. Karasev, R. Inoue, and P.G. Jönsson: Steel Res. Int., 2015, vol. 86, pp. 1271–78.CrossRefGoogle Scholar
  86. 86.
    N. Eustathopoulos and B. Drevet: J. Phys. III, 1994, vol. 4, p. 1985.Google Scholar
  87. 87.
    K. Ogino, S. Hara, T. Miwa, and S. Kimoto: Trans. ISIJ, 1984, vol. 24, pp. 522–31.CrossRefGoogle Scholar
  88. 88.
    D. Munz and T. Fett: Ceramics: Mechanical Properties, Failure Behaviour Materials Selection, 2nd ed., Springer Science & Business Media, New York, NY, 2013.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Uxia Dieguez Salgado
    • 1
  • Christian Weiß
    • 2
  • Susanne K. Michelic
    • 1
  • Christian Bernhard
    • 1
  1. 1.Department of Ferrous MetallurgyMontanuniversitaet LeobenLeobenAustria
  2. 2.Department of Environmental and Energy Process EngineeringMontanuniversitaet LeobenLeobenAustria

Personalised recommendations