Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 2038–2049 | Cite as

Study of the Mechanism of Liquid Slag Infiltration for Lubrication in Slab Continuous Casting

  • Shaoda Zhang
  • Qiangqiang Wang
  • Shengping He
  • Qian Wang
Article

Abstract

Consistent and uniform lubrication of the solidifying shell, especially in the meniscus, is crucial for the smooth continuous casting operation and production of strands free of surface defects. Thus, the current study established a coupled model to study the inflow behavior of liquid slag to the mold-strand channel, taking the solidification of steel and slag and the periodic oscillation of mold into account. The difficulties and solutions for the simulation were described in detail. The predicted profiles of the slag rim and initial shell were in good agreement with the reports. The main results indicated that liquid slag could be squeezed out and back into the slag pool in a negative strip period while a large amount of liquid slag could infiltrate into the mold-strand channel. Thus, the amount of slag consumed in the negative strip period was relatively small compared with that in the positive strip period. The predicted variation of slag consumption during mold oscillation was periodic, and the average value was 0.274 kg/m2, which agreed well with the slag consumption in industrial practice. The current model can predict and optimize the oscillation parameters aiming at stable lubrication conditions.

Notes

Acknowledgments

The authors are grateful for support from the Key Project of Natural Science Foundation of China (Grant No. U1660204) and the Fundamental Research Funds for the Central Universities in China (Grant No. 106112017CDJXY130001).

References

  1. 1.
    K.C. Mills: Ironmaking Steelmaking, 2017, vol. 44, pp. 326-32.CrossRefGoogle Scholar
  2. 2.
    K.C. Mills: ISIJ Int., 2016, vol. 56, pp. 1-13.CrossRefGoogle Scholar
  3. 3.
    K. Okazawa, T. Kajitani, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 226-33.CrossRefGoogle Scholar
  4. 4.
    V. Ludlow, B. Harris, S. Riaz, and A. Normanton: Ironmaking Steelmaking, 2005, vol. 32, pp. 120-26.CrossRefGoogle Scholar
  5. 5.
    Y. Ren, L.F. Zhang, and S.S. Li: ISIJ Int., 2014, vol. 54, pp. 2772-79.CrossRefGoogle Scholar
  6. 6.
    N. Pradhan, M. Ghosh, D. S. Basu, and S. Mazumdar: ISIJ Int., 1999, vol. 39, pp. 804-08.CrossRefGoogle Scholar
  7. 7.
    K. Tsutsumi, J. Ohtake, and M. Hino: ISIJ Int., 2000, vol. 40, pp. 601-08.CrossRefGoogle Scholar
  8. 8.
    A. Yamauchi, T. Emi, and S. Seetharaman: ISIJ Int., 2002, vol. 42, pp. 1084-93.CrossRefGoogle Scholar
  9. 9.
    C. Ojeda, J. Sengupta, B.G. Thomas, J. Barco, and J.L. Arana: Proc. AISTech Conf., 2006. pp. 1017-28.Google Scholar
  10. 10.
    K. Okazawa, T. Kajitani, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 234-40.CrossRefGoogle Scholar
  11. 11.
    T. Kajitani, K. Okazawa, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 250-56.CrossRefGoogle Scholar
  12. 12.
    P.E. Ramirez-Lopez, P.D. Lee, and K.C. Mills: ISIJ Int., 2010, vol. 50, pp. 425-34.CrossRefGoogle Scholar
  13. 13.
    P.E. Ramirez-Lopez, P.D. Lee, K.C. Mills, and B. Santillana: ISIJ Int., 2010, vol. 50, pp. 1797-804.CrossRefGoogle Scholar
  14. 14.
    P.E. Ramirez-Lopez, U. Sjostrom, P.D. Lee, K.C. Mills, B. Jonsson, and J. Janis: Proc. AISTech Conf., 2012 pp. 1259-67.Google Scholar
  15. 15.
    X.D. Wang, L.W. Kong, M. Yao, and X.B. Zhang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 357-66.CrossRefGoogle Scholar
  16. 16.
    J. Yang, X.N. Meng, N. Wang, M.Y. Zhu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1230-47.CrossRefGoogle Scholar
  17. 17.
    M.S. Jenkins: Monash University, 1999.Google Scholar
  18. 18.
    K. Tsutsumi, H. Murakami, S. Nishioka, M. Tada, M. Nakada, and M. Komatsu: Tetsu-to-Hagane, 1998, vol. 84, pp. 617-24.CrossRefGoogle Scholar
  19. 19.
    K.C. Mills, P.E. Ramirez-Lopez, P.D. Lee, B. Santillana, B.G. Thomas, and R. Morales: Ironmaking Steelmaking, 2014, vol. 41, pp. 242-49.CrossRefGoogle Scholar
  20. 20.
    B.G. Thomas, L.F. Zhang: ISIJ Int., 2001, vol. 41, pp. 1181-93.CrossRefGoogle Scholar
  21. 21.
    L.F. Zhang: JOM, 2012, vol. 64, pp. 1059-62.CrossRefGoogle Scholar
  22. 22.
    ANSYS FLUENT 14.0. Canonsburg, PA: ANSYS, Inc, 2011.Google Scholar
  23. 23.
    Q. Yuan, S.P. Vanka, B.G. Thomas, and S. Sivaramakrishnan: Metall. Mater. Trans. B, 2004, vol. 35, pp. 967-82.CrossRefGoogle Scholar
  24. 24.
    P.E. Ramirez-Lopez, K.C. Mills, P.D. Lee, and B. Santillana: Metall. Mater. Trans. B, 2012, vol. 43, pp. 109-22.CrossRefGoogle Scholar
  25. 25.
    C.W. Hirt and B.D. Nichols: J. Comput. Phy., 1981, vol. 39, pp. 201-25.CrossRefGoogle Scholar
  26. 26.
    J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comput. Phy., 1992, vol. 100, pp. 335-54.CrossRefGoogle Scholar
  27. 27.
    P. Liovic, J. Liow, and M. Rudman: ISIJ Int., 2001, vol. 41, pp. 225-33.CrossRefGoogle Scholar
  28. 28.
    L.F. Zhang, Y.F. Wang: JOM, 2012, vol. 64, pp. 1063-74.CrossRefGoogle Scholar
  29. 29.
    Q.Q. Wang, L.F. Zhang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1933-49.CrossRefGoogle Scholar
  30. 30.
    Q.Q. Wang, L.F. Zhang, and S. Sridhar: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2623-42.CrossRefGoogle Scholar
  31. 31.
    S.W. Lei, J.M. Zhang, X.K. Zhao, and K. He: ISIJ Int., 2014, vol. 54, pp. 94-102.CrossRefGoogle Scholar
  32. 32.
    R.D. Morales, A.G. Lopez, and I.M. Olivares: ISIJ Int., 1990, vol. 30, pp. 48-57.CrossRefGoogle Scholar
  33. 33.
    Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 707-25.CrossRefGoogle Scholar
  34. 34.
    T. Wu, S.P. He, L.L. Zhu, and Q. Wang: Mater. Trans., 2016, vol. 57, pp. 58-63.CrossRefGoogle Scholar
  35. 35.
    K.C. Mills, A.B. Fox, R.P. Thackray, and Z. Li: VII Int. Conf. Molten Slags Fluxes Salts, 2004, pp. 713-21.Google Scholar
  36. 36.
    Y. Ren, L.F. Zhang, H.T. Ling, Y. Wang, D.T. Pan, Q. Ren, and X.C. Wang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1433-38.CrossRefGoogle Scholar
  37. 37.
    X.K. Li, C.S. Qiao, X.S. Xu, H. Zhong, C.L. Xu, and S.C. Gong: Iron Steel, 1992, vol. 27, pp. 20-24.Google Scholar
  38. 38.
    M. Hanao, M. Kawamoto, and A. Yamanaka: ISIJ Int., 2012, vol. 52, pp. 1310-19.CrossRefGoogle Scholar
  39. 39.
    J.J. Bikerman: Physical surfaces, Academic Press, Cambridge 1970.Google Scholar
  40. 40.
    H. Fredriksson and J. Elfsberg: Scand. J. Metall., 2002, vol. 31, pp. 292-97.CrossRefGoogle Scholar
  41. 41.
    H. Shin, S. Kim, B.G. Thomas, G. Lee, J. Park, and J. Sengupta: ISIJ Int., 2006, vol. 46, pp. 1635-44.CrossRefGoogle Scholar
  42. 42.
    K.C. Mills and Carl-Åke Däcker: The Casting Powders Book, Springer New York, 2017.CrossRefGoogle Scholar
  43. 43.
    Y. Meng: Ph.D. Thesis, University of Illinois, 2004, p. 179.Google Scholar
  44. 44.
    K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmaking Steelmaking, 2005, vol. 32, pp. 26-34.CrossRefGoogle Scholar
  45. 45.
    K. Kawakami, T. Kitagawa, H. Mizukami, H. Uchibori, S. Miyahara, M. Suzuki, and Y. Shiratani: Tetsu-to-Hagane, 1981, vol. 67, pp. 1190-99.CrossRefGoogle Scholar
  46. 46.
    E. Anzai and T. Shigezumi: Nippon Kokan Technical Report, 1987, vol. 34, pp. 31-40.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Shaoda Zhang
    • 1
  • Qiangqiang Wang
    • 1
  • Shengping He
    • 1
  • Qian Wang
    • 1
  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations