Microstructure and Properties of the Al-27Si/Cu/Al-50Si Joint Brazed by the Partial Transient Liquid Phase Bonding

Communication
  • 31 Downloads

Abstract

Al-27Si and Al-50Si were brazed by using a thin Cu interlayer. The metallurgical bonding without obvious defects is achieved, and a wide brazing seam consisting of fine eutectic structures and coarse Si particles is formed in the Al-27Si/Cu/Al-50Si joint. The deposition of Si element in the liquid phases during solidification results in the formation of the larger Si particles and ultra-small Si particles in the brazing seam. The shear strength of the joint reaches 63 MPa.

References

  1. 1.
    D. Qiu, J.A. Taylor, M.X. Zhang and P.M. Kelly: Acta Mater., 2007, vol. 55, pp. 1447–1456.CrossRefGoogle Scholar
  2. 2.
    W. Yu, Y. Zhang, A. Jiang, T. Yan, Y. Tian, H. Zheng, X. Lin and X. Tian: Mater. Lett., 2017, vol. 207, pp. 93–95.CrossRefGoogle Scholar
  3. 3.
    M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura and J. Banhart: Acta Mater., 2012, vol. 60, pp. 3920–3928.CrossRefGoogle Scholar
  4. 4.
    P. Ma, Y. Jia, K.G. Prashanth, Z. Yu, C. Li, J. Zhao, S. Yang and L. Huang: J. Mater. Res., 2017, vol. 32, pp. 2210–2217.CrossRefGoogle Scholar
  5. 5.
    M.M. Tash and E.R.I. Mahmoud: Materials, 2016, vol. 9, pp. 442.CrossRefGoogle Scholar
  6. 6.
    W. Yu, Y. Zhang, T. Yan, Y. Liu, A. Jiang, H. Zheng and X. Tian: J. Alloys Compd., 2017, vol. 693, pp. 303–307.CrossRefGoogle Scholar
  7. 7.
    E. Karaköse, M. Yildiz and M. Keskin: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2468–2478.CrossRefGoogle Scholar
  8. 8.
    F. Cao, Y. Jia, K.G. Prashanth, P. Ma, J. Liu, S. Scudino, F. Huang, J. Eckert and J. Sun: Mater. Des., 2015, vol. 74, pp. 150–156.CrossRefGoogle Scholar
  9. 9.
    D.P. Sekulic, P.K. Galenko, M.D. Krivilyov, L. Walker and F. Gao: Int. J. Heat Mass Tran., 2005, vol. 58, pp. 2372–2384.CrossRefGoogle Scholar
  10. 10.
    W.B. Lee, Y.M. Yeon and S.B. Jung: Mater. Sci. Eng. A, 2003, vol. 355, pp. 154–159.CrossRefGoogle Scholar
  11. 11.
    W.B. Lee, Y.M. Yeon and S.B. Jung: Scripta Mater., 2003, vol. 49, pp. 423–428.CrossRefGoogle Scholar
  12. 12.
    Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki and K. Nakata: Mater. Sci. Eng. A, 2006, vol. 415, pp. 250–254.CrossRefGoogle Scholar
  13. 13.
    K.O. Cooke: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 627–634.CrossRefGoogle Scholar
  14. 14.
    Z. Cai, C. Zhang, R. Wang, C. Peng and X. Wu: Mater. Des., 2016, vol. 110, pp. 10–17.CrossRefGoogle Scholar
  15. 15.
    H.L. Lukas, N. Lebrun: Al-Cu-Si (Aluminium-Copper-Silicon), in: Ternary Alloys Systems–Phase Diagrams, Crystallographic and Thermodynamic Data, Light Metal Systems, Part 2: Selected Systems form Al-Cu-Fe to Al-Fe-Ti, G. Effenberg and S. Ilyenko (ed.), Springer, New York, 2005, pp. 135–147.Google Scholar
  16. 16.
    S. Annavarapu, D. Apelian and A. Lawley: Metall. Trans. A, 1990, vol. 21, pp. 3237–3256.CrossRefGoogle Scholar
  17. 17.
    S.Y. Chang, L.C. Tsao, T.Y. Li and T.H. Chuang: J. Alloys Compd., 2009, vol. 488, pp. 174–180.CrossRefGoogle Scholar
  18. 18.
    C.S. Tan, R. Reif, N.D. Theodore and S. Pozder: Appl. Phys. Lett., 2005, vol. 87, pp. 201909.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Panzhihua International School of Vanadium and TitaniumPanzhihua CollegePanzhihuaP.R. China

Personalised recommendations