Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 1732–1739 | Cite as

Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si System in Controlled Gas Atmosphere: Experimental Results at 1523 K (1250 °C) and P(SO2) = 0.25 atm

  • Ata Fallah-Mehrjardi
  • Taufiq Hidayat
  • Peter C. Hayes
  • Evgueni Jak
Article
  • 86 Downloads

Abstract

To assist in the optimization of copper smelting and converting processes, accurate new measurements of the phase equilibria of the Cu-Fe-O-S-Si system have been undertaken. The experimental investigation was focused on the characterization of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system at 1523 K (1250 °C), P(SO2) = 0.25 atm, and a range of P(O2)s. The experimental methodology, developed in PYROSEARCH, includes high-temperature equilibration of samples on substrate made from the silica primary phase in controlled gas atmospheres (CO/CO2/SO2/Ar) followed by rapid quenching of the equilibrium condensed phases and direct measurement of the phase compositions with electron-probe X-ray microanalysis (EPMA). The data provided in the present study at 1523 K (1250 °C) and the previous study by the authors at 1473 K (1200 °C) has enabled the determination of the effects of temperature on the phase equilibria of the multicomponent multiphase system, including such characteristics as the chemically dissolved copper in slag and Fe/SiO2 ratio at silica saturation as a function of copper concentration in matte. The new data will be used in the optimization of the thermodynamic database for the copper-containing systems.

Notes

Acknowledgments

The authors thank the Australian Research Council Linkage program, Altonorte Glencore, Atlantic Copper, Aurubis, Olympic Dam Operation BHP Billiton, Kazzinc Glencore, PASAR Glencore, Outotec Oy (Espoo), Anglo American Platinum, Umicore, and Kennecott Rio Tinto for the financial and technical support for this study. The authors thank the Centre for Microscopy and Microanalysis, University of Queensland, for technical support.

References

  1. 1.
    F.J. Tavera and E. Bedolla: Int. J. Miner. Process., 1990, vol. 29, pp. 289–309.CrossRefGoogle Scholar
  2. 2.
    A. Geveci and T. Rosenqvist: Trans. Inst. Min. Metall., 1973, vol. 82, pp. C193–C201.Google Scholar
  3. 3.
    R. Shimpo, S. Goto, O. Ogawa, and I. Asakura: Can. Metall. Q., 1986, vol. 25, pp. 113–21.CrossRefGoogle Scholar
  4. 4.
    M. Nagamori: Metall. Trans., 1974, vol. 5, pp. 531–38.CrossRefGoogle Scholar
  5. 5.
    A. Yazawa, S. Nakazawa, and Y. Takeda: Proc. Int. Sulfide Smelting Symp., TMS– AIME, San Francisco, CA, 1983.Google Scholar
  6. 6.
    G.H. Kaiura, K. Watanabe, and A. Yazawa: Can. Metall. Q., 1980, vol. 19, pp. 191–200.CrossRefGoogle Scholar
  7. 7.
    H. Jalkanen: Scand. J. Metall., 1981, vol. 10, pp. 177–84.Google Scholar
  8. 8.
    Y. Takeda: Proc. 5th Int. Conf. Molten Slags, Fluxes and Salts, Iron and Steel Society, Warrendale, PA, 1997.Google Scholar
  9. 9.
    U. Kuxmann and F.Y. Bor: Erzmetallurgy, 1965, vol. 18, pp. 441–50.Google Scholar
  10. 10.
    N. Korakas: Ph.D. Thesis, Universitè de Liège, Liège, Belgium, 1964.Google Scholar
  11. 11.
    F.J. Tavera and W.G. Davenport: Metall. Trans. B, 1979, vol. 10B, pp. 237–41.CrossRefGoogle Scholar
  12. 12.
    J.M. Font, G. Roghani, M. Hino, and K. Itagaki: Metall. Rev. MMIJ, 1998, vol. 15, pp. 75–86.Google Scholar
  13. 13.
    H.M. Henao, L.A. Ushkov, and E. Jak: Proc. 9th Int. Conf. Molten Slags, Fluxes and Salts, The Chinese Society for Metals, Beijing, 2012.Google Scholar
  14. 14.
    H. Li and W.J. Rankin: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 79–89.CrossRefGoogle Scholar
  15. 15.
    Z. Sun, T. Hidayat, P. Hayes, and E. Jak: Proc. 8th Int. Copper Conf., Chilean Institute of Mining Engineers, Santiago, Chile, 2013.Google Scholar
  16. 16.
    A. Fallah-Mehrjardi, T. Hidayat, P.C. Hayes, and E. Jak: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 3002–16.CrossRefGoogle Scholar
  17. 17.
    A. Fallah-Mehrjardi, T. Hidayat, P.C. Hayes, and E. Jak: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 3017–26.CrossRefGoogle Scholar
  18. 18.
    S.A. Degterov and A.D. Pelton: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 661–69.CrossRefGoogle Scholar
  19. 19.
    A. Yazawa: Can. Metall. Q., 1974, vol. 13, pp. 443–53.CrossRefGoogle Scholar
  20. 20.
    A. Muan and E.F. Osborn: Phase Equilibria among Oxides in Steelmaking, Addison-Wesley, Reading, MA, 1965.Google Scholar
  21. 21.
    G. Roghani, M. Hino, K. Itagaki (1996) Mater. Trans., JIM, vol. 37, pp. 1431–37.CrossRefGoogle Scholar
  22. 22.
    M. Nagamori: JOM, 1994, vol. 46, pp. 65–71.CrossRefGoogle Scholar
  23. 23.
    Y. Takeda: Proc. 4th Int. Conf. Molten Slags and Fluxes, ISIJ, Sendai, 1992.Google Scholar
  24. 24.
    H.M. Henao, P.C. Hayes, and E. Jak: Australian Research Council Linkage Program Report: Experimental Study of Slag-Matte Equilibria in the Ca-Cu-Fe-O-S-Si System at Fixed P(SO2) and P(O2), Pyrosearch, The University of Queensland, Brisbane, Australia, 2013.Google Scholar
  25. 25.
    G. Roghani, Y. Takeda, and K. Itagaki: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 705–12.CrossRefGoogle Scholar
  26. 26.
    G. Roghani, M. Hino, and K. Itagaki: Proc. Int. Conf. Molten Slags, Fluxes and Salts, Iron and Steel Society, Sydney, 1997.Google Scholar
  27. 27.
    G. Roghani, M. Hino, and K. Itagaki (1997) Mater. Trans., JIM 38, pp. 707–13.CrossRefGoogle Scholar
  28. 28.
    G. Roghani, J.C. Font, M. Hino, and K. Itagaki (1996) Mater. Trans., JIM, 37, pp. 1574–79.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Ata Fallah-Mehrjardi
    • 1
    • 2
  • Taufiq Hidayat
    • 1
  • Peter C. Hayes
    • 1
  • Evgueni Jak
    • 1
  1. 1.Pyrometallurgy Innovation Centre (PYROSEARCH), School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.Aurubis AGHamburgGermany

Personalised recommendations