Fault Detection and Diagnosis In Hall–Héroult Cells Based on Individual Anode Current Measurements Using Dynamic Kernel PCA

  • Yuchen Yao
  • Jie Bao
  • Maria Skyllas-Kazacos
  • Barry J. Welch
  • Sergey Akhmetov
Article
  • 39 Downloads

Abstract

Individual anode current signals in aluminum reduction cells provide localized cell conditions in the vicinity of each anode, which contain more information than the conventionally measured cell voltage and line current. One common use of this measurement is to identify process faults that can cause significant changes in the anode current signals. While this method is simple and direct, it ignores the interactions between anode currents and other important process variables. This paper presents an approach that applies multivariate statistical analysis techniques to individual anode currents and other process operating data, for the detection and diagnosis of local process abnormalities in aluminum reduction cells. Specifically, since the Hall–Héroult process is time-varying with its process variables dynamically and nonlinearly correlated, dynamic kernel principal component analysis with moving windows is used. The cell is discretized into a number of subsystems, with each subsystem representing one anode and cell conditions in its vicinity. The fault associated with each subsystem is identified based on multivariate statistical control charts. The results show that the proposed approach is able to not only effectively pinpoint the problematic areas in the cell, but also assess the effect of the fault on different parts of the cell.

Notes

Acknowledgments

This work is financially supported by Emirates Global Aluminum, Jabel Ali Operations and Australian Research Council Discovery Project DP160101810. In particular, the authors acknowledge the kind support and assistance from Dr. Ali Jassim from Emirates Global Aluminum.

References

  1. 1.
    K. Grjotheim and B.J. Welch: Aluminium Smelter Technology: a Pure and Applied Approach. Aluminium-Verlag, Düsseldorf, Germany, 1980, pp. 4-8.Google Scholar
  2. 2.
    K. Grjotheim and H. Kvande: Introduction to Aluminium Electrolysis: Understanding the Hall-Héroult Process, 2nd ed., Aluminium-Verlag, Düsseldorf, Germany, 1993, pp. 1-8.Google Scholar
  3. 3.
    J.T. Keniry, G.C. Barber, M.P. Taylor and B.J. Welch: TMS Light Metals 2001, New Orleans, LA, 2001, pp. 1225–32.Google Scholar
  4. 4.
    W.M. Barnett: Measuring Current Distribution in an Aluminium Reduction Cell. US Patent 4786379, 1988.Google Scholar
  5. 5.
    J. Keniry and E. Shaidulin: TMS Light Metals 2008, Warrendale, PA, 2008, pp. 287–92.Google Scholar
  6. 6.
    J. Evans and N. Urata: TMS Light Metals 2012, Orlando, FL, 2012, pp. 939–42.Google Scholar
  7. 7.
    G.C. Barber: The Impact of Anode-Related Process Dynamics of Cell Behaviour During Aluminium Electrolysis. Ph.D. Thesis, Department of Chemical and Materials Engineering, School of Engineering, The University of Auckland, New Zealand, 1992, pp. 115–23.Google Scholar
  8. 8.
    A.J. Banjab, S. Akhmetov, B.J. Welch, M. Skyllas-Kazacos, J. Bao and Y. Yao: 11th Australasian Aluminium Smelting Technology Conference, Dubai, UAE, 2014, 09M6.Google Scholar
  9. 9.
    S. Yang, Z. Zou, J. Li and H. Zhang: JOM, 2016, vol. 68, pp. 623 - 34.CrossRefGoogle Scholar
  10. 10.
    K. Rye, M. Königsson and I. Solberg: TMS Light Metals 1998, San Antonio,TX, 1998, pp. 241–46.Google Scholar
  11. 11.
    D. Steingart, J. Evans, P. Wright, and D. Ziegler: TMS Light Metals 2008, Seattle, WA, 2008, pp. 473–78.Google Scholar
  12. 12.
    J. Evans and N. Urata: 10th Australasian Aluminium Smelting Technology Conference, Launceston, TAS, Australia, 2011.Google Scholar
  13. 13.
    C.Y. Cheung, C. Menictas, J. Bao, M. Skyllas-Kazacos and B.J. Welch: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 9632 - 44.CrossRefGoogle Scholar
  14. 14.
    L. Dion, C. Lagace, J.W. Evans, R. Victor, and L. Kiss: TMS Light Metals 2015, Orlando, FL, 2015, pp. 723–28.Google Scholar
  15. 15.
    A.J. Banjab, S. Akhmetov, B.J. Welch, M. Skyllas-Kazacos, J. Bao, and Y. Yao: TMS Light Metals 2015, Orlando, FL, 2015, pp. 545–50.Google Scholar
  16. 16.
    Y. Yao, C.Y. Cheung, J. Bao, M. Skyllas-Kazacos, B.J. Welch, and S. Akhmetov: TMS Light Metals 2016, Nashville, TN, 2016, pp. 595–600.Google Scholar
  17. 17.
    Y. Yao, C.Y. Cheung, J. Bao, M. Skyllas-Kazacos, B.J. Welch and S. Akhmetov: AIChE J., 2017, vol. 63, pp. 2806 - 18.CrossRefGoogle Scholar
  18. 18.
    N.A.A. Majid, M.P. Taylor, J.J.J. Chen, M. Stam, A. Mulder, B.R.Young: Control Eng. Pract., 2011, vol. 19, pp. 367 - 79.CrossRefGoogle Scholar
  19. 19.
    N.A.A. Majid, M.P. Taylor, J.J.J. Chen, B.R.Young: Comput. Chem. Eng., 2011, vol. 35, pp. 2457 - 68.CrossRefGoogle Scholar
  20. 20.
    N.A.A. Majid, M.P. Taylor, J.J.J. Chen, W. Yu, B.R.Young: J. Mater. Sci., 2012, vol. 47, pp. 1268 - 79.CrossRefGoogle Scholar
  21. 21.
    E. Batista, H. Seltmann, and J. Greenhouse: 19th International Symposium of ICSOBA, Belém, Brazil, 2012.Google Scholar
  22. 22.
    J. Tessier, C. Duchesne, G.P. Tarcy, C. Gauthier and G. Dufour: Metall. Mater. Trans. B, 2010, vol.41B, pp. 612-24.CrossRefGoogle Scholar
  23. 23.
    J. Tessier, C. Duchesne, G.P. Tarcy, C. Gauthier and G. Dufour: Ind. Eng. Chem. Res., 2012, vol. 51, pp. 1311 - 23.CrossRefGoogle Scholar
  24. 24.
    B. Schölkopf, A.J. Smola and K.R. Möller: Neural Comput., 1998, vol. 10, pp. 1299-1319.CrossRefGoogle Scholar
  25. 25.
    W. Haupin: TMS Light Metals 1998, San Antonio, TX, 1998, pp. 531–37.Google Scholar
  26. 26.
    P. Biedler: Modeling of an Aluminium Reudction Cell for the Development of a State Estimator. Ph.D. Thesis, Department of Mechanical and Aerospace Engineering, West Virginia University, 2003, pp. 81–83.Google Scholar
  27. 27.
    V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, and K. Yin: Comput. Chem. Eng., 2003, vol. 27, pp. 327–46.Google Scholar
  28. 28.
    J.F. MacGregor and T. Kourti: Control Eng. Pract., 1995, vol. 3, pp. 403-14.CrossRefGoogle Scholar
  29. 29.
    P. Nomikos and J.F. MacGregor: Technometrics, 1995, vol. 37, pp. 41-59.CrossRefGoogle Scholar
  30. 30.
    D. Dong and T.J. McAvoy: Comput. Chem. Eng., 1996, vol. 20, pp. 65-78.CrossRefGoogle Scholar
  31. 31.
    W. Ku, R.H. Storer, C. Georgakis: Chemom. Intell. Lab. Syst., 1995, vol. 30, pp. 179 - 96.CrossRefGoogle Scholar
  32. 32.
    S.W. Choi and I.B. Lee: Chem. Eng. Sci., 2004, vol. 59, pp. 5897 - 5908.CrossRefGoogle Scholar
  33. 33.
    X. Wang, U. Kruger and G.W. Irwin: Ind. Eng. Chem. Res., 2005, vol. 44, pp. 5691 - 702.CrossRefGoogle Scholar
  34. 34.
    X. Liu, U. Kruger, T. Littler, L. Xie and S. Wang: Chemom. Intell. Lab. Syst., 2009, vol. 96, 132 - 43.CrossRefGoogle Scholar
  35. 35.
    C. Chouaib, H. Mohamed-Faouzi and D. Messaoud: 9th Asian Control Conference (ASCC), Istanbul, Turkey, 2013, pp. 1-6.Google Scholar
  36. 36.
    S.W. Choi, C. Lee, J. Lee, J.H. Park and I. Lee: Chemom. Intell. Lab. Syst., 2005, vol. 75, pp. 55-67.CrossRefGoogle Scholar
  37. 37.
    J.F. MacGregor, C. Jaeckle, C. Kiparissides and M. Koutoudi: AIChE J., 1994, vol. 40, pp. 826-38.CrossRefGoogle Scholar
  38. 38.
    R. Dunia, S.J. Qin, T.F. Edgar and T.J. McAvoy: AIChE J., 1996, vol. 42, pp. 2797-812.CrossRefGoogle Scholar
  39. 39.
    T. Takahashi and T. Kurita: Lecture Notes in Computer Science, 2002, vol. 2415, pp. 739–44.Google Scholar
  40. 40.
    J. Cho, J. Lee, S.W. Choi, D. Lee and I. Lee: Chem. Eng. Sci., 2005, vol. 60, pp. 279-88.CrossRefGoogle Scholar
  41. 41.
    Y. Huang, J. Gertler and T.J. McAvoy: J. Process Control, 2000, vol. 10, pp. 459-69.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Yuchen Yao
    • 1
  • Jie Bao
    • 1
  • Maria Skyllas-Kazacos
    • 1
  • Barry J. Welch
    • 1
  • Sergey Akhmetov
    • 2
  1. 1.School of Chemical EngineeringThe University of New South Wales, UNSWSydneyAustralia
  2. 2.Emirates Global AluminumJebel Ali OperationsDubaiUnited Arab Emirates

Personalised recommendations