Metallurgical and Materials Transactions B

, Volume 49, Issue 2, pp 569–580 | Cite as

Effect of Deoxidation Process on Inclusion and Fatigue Performance of Spring Steel for Automobile Suspension

  • Yang HuEmail author
  • Weiqing Chen
  • Changjie Wan
  • Fangjun Wang
  • Huaibin Han


55SiCrA spring steel was smelted in a vacuum induction levitation furnace. The liquid steel was treated by Si deoxidation, Al modification with Ca treatment and Al modification, and the steel samples were obtained with deformable Al2O3-SiO2-CaO-MgO inclusions closely contacted with steel matrix, Al2O3-CaO-CaS-SiO2-MgO inclusions surrounded by small voids or Al2O3(> 80 pct)-SiO2-CaO-MgO inclusions surrounded by big voids, respectively. Effect of three types of inclusions on steel fatigue cracks was studied. The perpendicular and transverse fatigue cracks around the three types of inclusions leading to fracture were found to vary in behavior. Under the applied stress amplitude of 775 MPa, the fatigue lives of the three spring steels decreased from 4.0 × 107 to 3.8 × 107, and to 3.1 × 107 cycles. For the applied stress amplitude of 750 MPa, the fatigue lives of the three spring steels decreased from 5.2 × 107 to 4.1 × 107, and to 3.4 × 107 cycles. Based on the voids around inclusions, the equivalent size of initial fatigue crack has been newly defined as \( \sqrt {\frac{{{\text{area}}_{\text{inclusion}} }}{{(1 - {\text{CC}})}}} \), where the contraction coefficient CC of inclusion was introduced. A reliable forecast model of the critical size of inclusion leading to fracture was established by the incorporation of actual width binclusion or diameter dinclusion of internal inclusion; the model prediction was found to be in agreement with experimental results.


  1. 1.
    W.J. Nam, C.S. Lee and D.Y. Ban: Mater. Sci. Eng. A, 2000, vol. 289, pp. 8-17.CrossRefGoogle Scholar
  2. 2.
    H. Mughrabi: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 25, pp. 755-764.CrossRefGoogle Scholar
  3. 3.
    V.F. Terentev: Met. Sci. Heat Treat., 2008, vol. 50, pp. 88-96.CrossRefGoogle Scholar
  4. 4.
    D. Brooksbank, K.W. Andrews: J. Iron Steel., 1970, 210:246-255.Google Scholar
  5. 5.
    P. Wu and A. McLean: J. Iron Steel Res. Int., 2011, 18:762-768.Google Scholar
  6. 6.
    Y.L. Zhang, J.L. Wang, Q.C. Sun, H. Zhang and P.S. Jiang: Mater. Des., 2015, vol. 69, pp. 241-246.CrossRefGoogle Scholar
  7. 7.
    Q.Y. Wang, C. Bathias, N. Kawagoishi and Q. Chen: Int. J. Fatigue, 2002, vol. 24, pp. 1269-1274.CrossRefGoogle Scholar
  8. 8.
    Y.Q. Meng, Y.R. Zheng and H.Q. Zhao: J. Iron Steel Res. (China), 2015, vol. 27, pp. 1-6.Google Scholar
  9. 9.
    Y. Hu and W. Q. Chen: Ironmaking Steelmaking, 2016, vol. 43, pp. 340-350.CrossRefGoogle Scholar
  10. 10.
    C. Bertrand, J. Molinero, S. Landa, R. Elvira, M. Wild, G. Barthold, P. Valentin and H. Schifferl: Ironmaking Steelmaking, 2003, vol. 30, pp. 165-169.CrossRefGoogle Scholar
  11. 11.
    Y. Murakami and H. Usuki: Int. J. Fatigue, 1989, vol. 11, pp. 299-307.CrossRefGoogle Scholar
  12. 12.
    J.M. Zhang, S.X. Lia, Z.G. Yang, G.Y. Li, W.J. Hui and Y.Q. Weng: Int. J. Fatigue, 2007, vol. 29, pp. 765-771.CrossRefGoogle Scholar
  13. 13.
    J.L. Wang, Y.L. Zhang, S.J. Liu, Q.C. Sun and H.T. Lu: Int. J. Fatigue, 2016, vol. 87, pp. 203-209.CrossRefGoogle Scholar
  14. 14.
    W. Yan, H.C. Xu and W.Q. Chen: Steel Res. Int., 2014, vol. 85, pp. 53-59.CrossRefGoogle Scholar
  15. 15.
    K.P. Wang, M. Jiang, X.H. Wang, Y. Wang, H.Q. Zhao and Z.M. Cao: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 282-290.CrossRefGoogle Scholar
  16. 16.
    W. Yang, L.F. Zhang, X.H. Wang, Y. Ren, X.F. Liu and Q.L. Shan: ISIJ, 2013, vol. 53, pp. 1401-1410.CrossRefGoogle Scholar
  17. 17.
    V. Presem, B. Korousic and J.W. Hastie: Steel Res. Int., 1991, vol. 62, pp. 289-295.CrossRefGoogle Scholar
  18. 18.
    Y. Hu, W.Q. Chen, H.B. Han and R.J. Bai: Ironmaking Steelmaking, 2017, vol. 44, pp. 28-35.CrossRefGoogle Scholar
  19. 19.
    L. Holappa, M. Hamalainen, M. Liukkonen and M. Lind: Ironmaking Steelmaking, 2003, vol. 30, pp. 111-115.CrossRefGoogle Scholar
  20. 20.
    M.S. Prasad, C.S. Venkatesha and T. Jayaraju: J. Miner. Mater. Charact. Eng., 2011, vol. 10, pp. 1263-1275.Google Scholar
  21. 21.
    Y. Sandaiji, E. Tamura and T. Tsuchida: Procedia Mater. Sci., 2014, vol. 3, pp. 894-899.CrossRefGoogle Scholar
  22. 22.
    Y. Neishi, T. Makino, N. Matsui, H. Matsumoto, M. Higashida and H. Ambai: Metall. Mater. Trans. A, 2013, vol. 44, pp. 2131-2140.CrossRefGoogle Scholar
  23. 23.
    Y.P. Zeng, H.M. Fan and X.S. Xie: Int. J. Miner. Metall. Mater., 2013, 20:360-364.CrossRefGoogle Scholar
  24. 24.
    Y. Murakami and M. Endo: Int. J. Fatigue, 1994, vol. 16, pp. 163-182.CrossRefGoogle Scholar
  25. 25.
    Y. Murakami: Chromatographia, 2002, vol. 70, pp. 1197-1200.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Yang Hu
    • 1
    • 2
    Email author
  • Weiqing Chen
    • 1
  • Changjie Wan
    • 3
  • Fangjun Wang
    • 3
  • Huaibin Han
    • 3
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Institute of Aeronautical MaterialsBeijingChina
  3. 3.Henan Jiyuan Iron and Steel Group Co., LtdJiyuanChina

Personalised recommendations