Metallurgical and Materials Transactions B

, Volume 49, Issue 2, pp 699–708 | Cite as

Friction Hydro-Pillar Processing of a High Carbon Steel: Joint Structure and Properties

  • Luis Fernando Kanan
  • Buchibabu Vicharapu
  • Antonio Fernando Burkert Bueno
  • Thomas Clarke
  • Amitava De


A coupled experimental and theoretical study is reported here on friction hydro-pillar processing of AISI 4140 steel, which is a novel solid-state joining technique to repair and fill crack holes in thick-walled components by an external stud. The stud is rotated and forced to fill a crack hole by plastic flow. During the process, frictional heating occurs along the interface of the stud and the wall of crack hole leading to thermal softening of the stud that eases its plastic deformation. The effect of the stud force, its rotational speed and the total processing time on the rate of heat generation and resulting transient temperature field is therefore examined to correlate the processing variables with the joint structure and properties in a systematic and quantitative manner, which is currently scarce in the published literature. The results show that a gentler stud force rate and greater processing time can promote proper filling of the crack hole and facilitate a defect-free joint between the stud and original component.



The work was jointly supported by the Department of Science and Technology (Ministry of Science and Technology), India, and National Council for Science and Technological Development (CNPq of the Ministry of Science, Technology and Innovation), Federal Republic of Brazil.


  1. 1.
    D.L.H. Bulbring., D.G. Hattingh., A. Botes., and D.H. Odendaal: J. S. Afr. Inst. Min. and Metall, 2013, vol. 113, pp. 129–36.Google Scholar
  2. 2.
    P.J. Hartley: Weld. Met. Fab, 2000, vol. 9, pp. 6–8.Google Scholar
  3. 3.
    D.G. Hattingh, M.N. James, M. Newy, R. Scheepers, and P. Doubell: Theor. Appl. Fract. Mech, 2016, vol. 83, pp. 125–34.Google Scholar
  4. 4.
    S. Liu, J.E. Indacochea: Metals Handbook, 10th ed., American society for Metals, Ohio, 1992.Google Scholar
  5. 5.
    V.H.C. de Albuqueraque, C.C. Silva, C.R.O. Moura, W.M. Aguiar, and J.P. Farias: Mater. Des, 2009, vol. 30, pp. 1068–74.Google Scholar
  6. 6.
    D.T. Buzzatti, J.T. Buzzatti, R.E. dos Santos, F. Mattei, M. Chludzinski, and T.R. Strohaecker: Soldagem & Inspecao, 2015, vol. 20, pp. 287–99.Google Scholar
  7. 7.
    D.G. Hattingh, D.L.H. Bulbring, A. Els-Botes, M.N. James: Mater. Des, 2011, vol. 32, pp. 3421–30.Google Scholar
  8. 8.
    Y. Yin, X. Yang, L. Cui, F. Wang, and S. Li: Mater. Des, 2015, vol. 88, pp. 990–98.Google Scholar
  9. 9.
    C.P. Meinhardt, M. Chuldzinski, R.F. Ribeiro, C.L.F. Rocha, A.C.S. Santos, and T.R. Strokaeker: J. Mater. Process. Technol, 2017, vol. 246(1), pp. 158–66.Google Scholar
  10. 10.
    ASM Handbook, Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1, ASTM International, 2008, pp. 1–1063.Google Scholar
  11. 11.
    C.C. Silva, V.H.C. de Albuqueraque, C.R.O. Moura, W.M. Aguiar, and J.P. Farias: J. Mater. Process. Technol. 2009, vol. 18, pp. 324–31.Google Scholar
  12. 12.
    M. Chludzinski, M.P. Paes, F.L. Bastian, and T.R. Strohaecker, Mater. Des, 2012, vol. 33, pp. 340–44.Google Scholar
  13. 13.
    A. Meyer: Master’s dissertation, Technical University Brunschweigh, Germany, 2002., Accessed 03 October, 2017.
  14. 14.
    B. Vicharapu, L.F. Kanan, T. Clarke, and A. De: Sci. Technol. Weld. Join, 2017. vol. 22, pp. 555–61.Google Scholar
  15. 15.
    S.J. Unfried, M.T.P. Paes, T.F.C. Hermenegildo, F.L. Bastian, and A.J. Ramirez: Sci. Technol. Weld. Join, 2015, vol. 15, pp. 506–13.Google Scholar
  16. 16.
    C.R.L. Lessa, D. Martina, A.P. Figueirea, B.F. Machado, F. Claudiam, and T.R. Strohaeker: Materials Research, 2015, vol. 19, pp. 928–36.Google Scholar
  17. 17.
    L. Cui, X. Yang, D. Wang, X. Hou, J. Cao, and W. Xu: Mater. Sci. Eng. A, 2014, vol. 611, pp. 15–28.Google Scholar
  18. 18.
    ASTM E230/E230M, ASTM International, 2011, Pennsylvania, USA.Google Scholar
  19. 19.
    R. Nandan, G.G. Roy, T.J. Lienert, and T. Debroy: Acta. Mater, 2007, vol. 55, pp. 883–95.Google Scholar
  20. 20.
    V. Buchibabu, G.M. Reddy, and A. De: J. Mater. Process. Technol, 2017, vol. 241, pp. 86–92.Google Scholar
  21. 21.
    J.C. Ion, K.E. Easterling, and M.F. Ashby, Acta. Metall, 1984, vol. 32, pp. 1949–62.Google Scholar
  22. 22.
    R.S. Lakhkar, Y.C. Shin, and M.J.M., Krane: Mat. Sci. Eng. A, 2008, vol. 408, pp. 209–17.Google Scholar
  23. 23.
    ASM Handbook, Steel Heat Treating Fundamentals and Processes, vol. 4, ASTM International, 2013, pp. 1–784.Google Scholar
  24. 24.
    F. Cordovilla, A. Garcia-Beltran, P. Sanho, J. Domingues, L. Ruiz-de- Lara, J.L. Ocana: Mater. Des, 2016, vol. 102, pp. 225–37.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Luis Fernando Kanan
    • 1
  • Buchibabu Vicharapu
    • 2
  • Antonio Fernando Burkert Bueno
    • 1
  • Thomas Clarke
    • 1
  • Amitava De
    • 2
  1. 1.Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Indian Institute of Technology BombayMumbaiIndia

Personalised recommendations