Metallurgical and Materials Transactions B

, Volume 48, Issue 6, pp 3132–3142 | Cite as

Single Crystal Casting with Fluidized Carbon Bed Cooling: A Process Innovation for Quality Improvement and Cost Reduction

  • M. Hofmeister
  • M. M. Franke
  • C. Koerner
  • R. F. Singer


Superalloy gas turbine blades are being produced by investment casting and directional solidification. A new process, Fluidized Carbon Bed Cooling (FCBC), has been developed and is now being optimized in a prototype casting unit with 10 kg pouring weight. In early test runs with still rather simple mold cluster geometries, a reduction of the primary dendrite arm spacing of around 40 pct compared to the standard radiation cooling process (HRS) could be demonstrated. The improvement is mainly attributed to higher temperature gradients driving solidification, made possible by a functioning Dynamic Baffle. Compared to earlier development efforts in the literature, contamination of the melt and damage to the equipment are avoided using carbon-based fluidized bed materials and the so-called “counter pressure concept.”



The authors are grateful for financial support from the German Research Foundation (DFG) in the framework of the collaborative research center SFB/Transregio 103 project B1. Professor Jan Sieniawski, Dr. Dariusz Szeliga, Zenon Lipiński, and Grzegorz Jakubowicz from Rzeszów University of Technology (RZUT) in Poland are acknowledged for supplying ceramic molds.


  1. 1.
    R.F. Singer: Materials for advanced power engineering 1994: Part II, D. Coutsouradis, J.H. Davidson, J. Ewald, P. Greenfield, T. Khan, M. Malik, D.B. Meadowcroft, V. Ragis, R.B. Scarlin, F. Schubert, and D.V. Thornton, eds., Kluwer Academic Publishers, 1994, pp. 1707–29.Google Scholar
  2. 2.
    F. Hugo, H. Mayer, and R.F. Singer: 42nd Annual Technical Meeting/Investment Casting Institute: Atlanta, Georgia, 25–28 September 1994, Inst, Dallas, Tex., 1994.Google Scholar
  3. 3.
    3. M. M. Franke, R. M. Hilbinger, A. Lohmüller, and R. F. Singer: J. Mater. Process. Technol., 2013, vol. 213, pp. 2081–88.CrossRefGoogle Scholar
  4. 4.
    4. J. D. Miller and T. M. Pollock: Metall. Mater. Trans. A, 2014, vol. 45, pp. 411–25.CrossRefGoogle Scholar
  5. 5.
    5. A. F. Giamei and J. G. Tschinkel: Metall. Trans. A, 1976, vol. 7, pp. 1427–34.CrossRefGoogle Scholar
  6. 6.
    6. A. J. Elliott, T. M. Pollock, S. Tin, W. T. King, S.-C. Huang, and M. F. X. Gigliotti: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3221–31.CrossRefGoogle Scholar
  7. 7.
    7. M. Lamm and R.F. Singer: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1177–83.CrossRefGoogle Scholar
  8. 8.
    8. S. Steuer, P. Villechaise, T. M. Pollock, and J. Cormier: Mater. Sci. Eng., A, 2015, vol. 645, pp. 109–15.CrossRefGoogle Scholar
  9. 9.
    9. T. M. Pollock and W. H. Murphy: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1081–94.CrossRefGoogle Scholar
  10. 10.
    10. A. Heckl, S. Neumeier, M. Göken, and R. F. Singer: Mater. Sci. Eng., A, 2011, vol. 528, pp. 3435–44.CrossRefGoogle Scholar
  11. 11.
    11. R. Rettig, N. C. Ritter, H. E. Helmer, S. Neumeier, and R. F. Singer: Modelling Simul. Mater. Sci. Eng., 2015, vol. 23, p. 35004.CrossRefGoogle Scholar
  12. 12.
    R. Rettig, K. Matuszewski, A. Müller, H.E. Helmer, N.C. Ritter, and R.F. Singer: Superalloys 2016, M.C. Hardy, E.S. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, and S. Tin, eds., Wiley, 2016, pp. 35–44.Google Scholar
  13. 13.
    M. Lamm, A. Volek, O. Lüsebrink, and R.F. Singer: Materials for Advanced Power Engineering 2006: Part I, J. Lecomte-Beckers, M. Carton, F. Schubert, and P.J. Ennis, eds., Forschungszentrum Jülich GmbH, 2006, pp. 334–44.Google Scholar
  14. 14.
    M.S.A. Karunaratne, D.C. Cox, P. Carter, and R.C. Reed: Superalloys 2000, Ed. by K. Green, T. M. Pollock, and R. Kissinger, TMS, 2000, pp. 263–72.Google Scholar
  15. 15.
    15. K. Matuszewski, R. Rettig, H. Matysiak, Z. Peng, I. Povstugar, P. Choi, J. Müller, D. Raabe, E. Spiecker, K. J. Kurzydłowski, and R. F. Singer: Acta Mater., 2015, vol. 95, pp. 274–83.CrossRefGoogle Scholar
  16. 16.
    16. D. Ma, H. Lu, and A. Bührig-Polaczek: IOP Conf. Ser.: Mater. Sci. Eng., 2012, vol. 27, p. 12036.CrossRefGoogle Scholar
  17. 17.
    M. Konter, E. Kats, and N. Hofmann: Superalloys 2000, K. Green, T.M. Pollock, and R. Kissinger, eds., TMS, 2000, pp. 189–200.Google Scholar
  18. 18.
    J. Großmann, J. Preuhs, W. Esser, and R. F. Singer: Proceedings of the 1999 International Symposium on Liquid Metal Processing and Casting, A. Mitchell, L. Ridgway, and M. Baldwin, eds., 1999, pp. 31–40.Google Scholar
  19. 19.
    A. Lohmüller, W. Eßler, J. Großmann, M. Hördler, J. Preuhs, and F.R. Singer: Superalloys 2000, K. Green, T.M. Pollock, and R. Kissinger, eds., TMS, 2000, pp. 181–88.Google Scholar
  20. 20.
    R. F. Singer, T. Fitzgerald, and P. Krug: WO9605006 - Method and Device for Directionally Solidifying a Melt (1995), WO 9605006 A1 19960222.Google Scholar
  21. 21.
    21. W. Kurz and D. F. Fisher: Fundamentals of solidification, Trans Tech Publications, Switzerland, 1984.Google Scholar
  22. 22.
    P. Krug: Einfluss einer Flüssigmetallkühlung auf die Mikrostruktur gerichtet erstarrter Superlegierungen. Dissertation, Erlangen, 1998.Google Scholar
  23. 23.
    23. A. C. Rees, J. F. Davidson, J. S. Dennis, and A. N. Hayhurst: Chem. Eng. Sci., 2005, vol. 60, pp. 1143–53.CrossRefGoogle Scholar
  24. 24.
    L.D. Graham: US6035924 - Method of Casting a Metal Article (1998), US6035924.Google Scholar
  25. 25.
    25. R. C. Darton, R. D. LaNauze, J. F. Davidson, and D. Harrison: Trans. Inst. Chem. Eng., 1977, vol. 55, pp. 274–80.Google Scholar
  26. 26.
    26. D. Geldart: Powder Technology, 1973, vol. 7, pp. 285–92.CrossRefGoogle Scholar
  27. 27.
    P.N. Quested and J.E. Northwood: US 4573516 - Method and apparatus for casting directionally solidified articles (1983), US 4573516 A 19860304.Google Scholar
  28. 28.
    Y.G. Nakagawa, Y. Ohotomo, Y. Saiga, and H. Suto: Superalloys 1980, J.K. Tien, eds., American Society for Metals, 1980, pp. 267–74.Google Scholar
  29. 29.
    L.D. Graham and B.L. Rauguth: EP1153681 - Method and device for casting a metal article using a fluidized bed (2000), EP 1153681 A1 20011114.Google Scholar
  30. 30.
    O. Molerus: Principles of Flow in Diperse Systems, Chapman & Hall, 1993.Google Scholar
  31. 31.
    L.D. Graham: US2004173336 - Fluidized bed with baffle (2003), US 2004173336 A1 20040909.Google Scholar
  32. 32.
    M. Hofmeister, K.E. Wirth, and R.F. Singer: DE102014216766 - Verfahren zur Herstellung eines Gussbauteils (2014), DE102014216766 (A1) — 2016-02-25.Google Scholar
  33. 33.
    M. Hofmeister and R.F. Singer: DE102014208922 - Verfahren zur Herstellung eines Gussbauteils (2014), DE102014208922 (A1) — 2014-12-11.Google Scholar
  34. 34.
    M. Gell, D.N. Duhl, and A.F. Giamei: Superalloys 1980, J.K. Tien, eds., American Society for Metals, 1980.Google Scholar
  35. 35.
    35. Y. Zhou and A. Volek: Mater. Sci. Eng., A, 2008, vol. 479, pp. 324–32.CrossRefGoogle Scholar
  36. 36.
    36. S. Tin, T. M. Pollock, and W. Murphy: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1743–53.CrossRefGoogle Scholar
  37. 37.
    37. P. S. Kotval, J. D. Venables, and R. W. Calder: Metall. Mater. Trans. B, 1972, vol. 3, pp. 457–62.CrossRefGoogle Scholar
  38. 38.
    38. M. F. Llop, F. Madrid, J. Arnaldos, and J. Casal: Chem. Eng. Sci., 1996, vol. 51, pp. 5149–57.CrossRefGoogle Scholar
  39. 39.
    39. U. Betz, F. Hugo, and H. Mayer: BICTA Bulletin (British Investment Casting Trade Association), 1996, vol. 23, pp. 7–10.Google Scholar
  40. 40.
    D.M. Shah and A. Cetel: Superalloys 2000, K. Green, T.M. Pollock, and R. Kissinger, eds., TMS, 2000, pp. 295–304.Google Scholar
  41. 41.
    41. H. Jacobi and K. Schwerdtfeger: Metall. Trans. A, 1976, vol. 7, pp. 811–20.CrossRefGoogle Scholar
  42. 42.
    42. M. Rappaz, C. A. Gandin, J. L. Desbiolles, and P. Thévoz: Metall. Mater. Trans. A, 1996, vol. 27, pp. 695–705.CrossRefGoogle Scholar
  43. 43.
    G. van Rossum: Python 2.7, Python Software Foundation, 2017.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • M. Hofmeister
    • 1
  • M. M. Franke
    • 2
  • C. Koerner
    • 1
  • R. F. Singer
    • 1
    • 2
  1. 1.Institute of Metals Science and Engineering (WTM)University of Erlangen-NuernbergErlangenGermany
  2. 2.Neue Materialien Fürth GmbHFürthGermany

Personalised recommendations