Metallurgical and Materials Transactions B

, Volume 48, Issue 6, pp 2922–2929 | Cite as

Experimentally Determined Phase Diagram for the Barium Sulfide-Copper(I) Sulfide System Above 873 K (600 °C)

  • Caspar Stinn
  • Katsuhiro Nose
  • Toru Okabe
  • Antoine Allanore


The phase diagram of the barium sulfide-copper(I) sulfide system was investigated above 873 K (600 °C) using a custom-built differential thermal analysis (DTA) apparatus. The melting point of barium sulfide was determined utilizing a floating zone furnace. Four new compounds, Ba2Cu14S9, Ba2Cu2S3, Ba5Cu4S7, and Ba9Cu2S10, were identified through quench experiments analyzed with wavelength dispersive X-ray spectroscopy (WDS) and energy dispersive X-ray analysis (EDS). A miscibility gap was observed between 72 and 92 mol pct BaS using both DTA experiments and in situ melts observation in a floating zone furnace. A monotectic was observed at 94.5 mol pct BaS and 1288 K (1015 °C).



The authors wish to acknowledge the MIT UROP office Sanders, Lord, and DeFlorez Funds, Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (R2504) by JSPS, and the Office of Naval Research (N000141210521) for their financial support to this project. The authors wish to thank Dr. Sulata Sahu, Mr. Brian Chmielowiec, and Mr. Bradley Nakanishi for their insight and experimental assistance.


  1. 1.
    C. I. Pearce, R. A. D. Pattrick, D. J. Vaughn: Reviews in Mineralogy & Geochemistry, 2006, vol. 61, pp. 127-180.CrossRefGoogle Scholar
  2. 2.
    W. Grattidge, H. John: J. Appl. Phys., 1952, vol. 23(10), pp. 1145-1151.CrossRefGoogle Scholar
  3. 3.
    A. Egami, T. Onoye, K. Narita: Transactions of the Japan Institute of Metals, 1981, vol. 22(6), pp. 399-409.CrossRefGoogle Scholar
  4. 4.
    M. Bouroushian, F. Scholz: Electrochemistry of Metal Chalcogenides, Springer-Verlag, Heidelberg, Germany, 2010, pp. 57-75.Google Scholar
  5. 5.
    O.V. Andreev, N.N. Parshukov: Russ. J. Inorg. Chem, 1991, vol. 36, pp. 1190–1191.Google Scholar
  6. 6.
    C. Hidaka, M. Goto, M. Kubo, T. Takizawa: J. Cryst. Growth, 2005, vol. 275, pp. e439–e443.CrossRefGoogle Scholar
  7. 7.
    N. A. Khritohin, O. V. Andreev, O. V. Mitroshin, A. S. Korotkov: J. Phase Equilibria Diffus., 2004, vol. 25, pp. 515–519.Google Scholar
  8. 8.
    C. E. Holcombe: J. Less-Common Met., 1984, vol. 102, pp. 0–2.CrossRefGoogle Scholar
  9. 9.
    J. P. Rino, N. Studart: Quim. Nova, 2001, vol. 24, pp. 838–845.CrossRefGoogle Scholar
  10. 10.
    D. Shin, T. Zhu, X. Huang, O. Gunawan, V. Blum, and D.B. Mitzi: Adv. Mater., 2017, vol. 29, DOI: 10.1002/adma.201606945
  11. 11.
    K. Kurosaki, H. Uneda, H. Muta, S. Yamanaka: J. Alloys Compd., 2004, vol. 385, pp. 312–315.CrossRefGoogle Scholar
  12. 12.
    K. Kurosaki, H. Uneda, H. Muta, S. Yamanaka: J. Alloys Compd., 2005, vol. 388, pp. 122–25.CrossRefGoogle Scholar
  13. 13.
    S. Sokhanvaran, S. K. Lee, G. Lambotte, A. Allanore: J. Electrochem. Soc., 2016, vol. 163, pp. D115–D120.CrossRefGoogle Scholar
  14. 14.
    S. K. Sahu, B. Chmielowiec, A. Allanore: Electrochim. Acta, 2017, vol. 243, pp. 382–389.CrossRefGoogle Scholar
  15. 15.
    W.M. Haynes, ed., CRC Handbook of Chemistry and Physics, 97th ed., CRC Press/Taylor & Francis, Boca Raton, FL, 2016.Google Scholar
  16. 16.
    R. C. Mackenzie: Differential Thermal Analysis, Academic Press, New York, NY, 1970.Google Scholar
  17. 17.
    G. P. Skoro, J. R. Bennett, T. R. Edgecock, C. N. Booth: J. Nucl. Mater., 2012, vol. 426, pp. 45–51.CrossRefGoogle Scholar
  18. 18.
    P. D. Rino: Computational Materials Science, 2014, vol. 92, pp. 334–342.CrossRefGoogle Scholar
  19. 19.
    O. V. Andreev, N. V. Sikerina, A. V. Solov’eva: Zurnal Neorganiceskoj Himii, 2005, vol. 50(10), pp. 1697–1701.Google Scholar
  20. 20.
    C. Rinzler, A. Allanore: Philosophical Magazine, 2016, vol. 96(29), pp. 3041–3053.CrossRefGoogle Scholar
  21. 21.
    C. Rinzler, A. Allanore: Philosophical Magazine, 2017, vol. 97(8), pp. 561–571.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Caspar Stinn
    • 1
  • Katsuhiro Nose
    • 2
    • 3
    • 4
  • Toru Okabe
    • 2
  • Antoine Allanore
    • 3
  1. 1.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  3. 3.Department of Material Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Pan Pacific Copper Co., LtdTokyoJapan

Personalised recommendations