Skip to main content
Log in

Influence of Forced Flow on the Dendritic Growth of Fe-C Alloy: 3D vs 2D Simulation

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A 3D parallel cellular automaton-finite volume method (CA-FVM) model was used to simulate the equiaxed dendritic growth of an Fe-0.82 wt pct C alloy with xy-in-out and xyz-in-out type forced flows and the columnar dendritic growth with y-in-out type forced flow. In addition, the similarities and differences between the results of the 3D and 2D models are discussed and summarized in detail. The capabilities of the 3D and 2D CA-FVM models to predict the dendritic growth of the alloy with forced flow are validated through comparison with the boundary layer correction and Oseen–Ivanstov models, respectively. Because the forced flow can pass around perpendicular arms of the dendrites, the secondary arms at the sides upstream from the perpendicular arms are more developed than those on the upstream side of the upstream arms, especially at higher inlet velocities. In addition, compared to the xy-in-out case, the growth of the downstream arms is less inhibited and the secondary arms are more developed in the xyz-in-out case because of the greater lateral flow around their tips. Compared to the 3D case, the 2D equiaxed dendrites are more asymmetrical and lack secondary arms because of the thicker solute envelope. In the 3D case, the columnar dendrites on the upstream side (left one) are promoted, while the middle and downstream dendrites are inhibited in sequence. However, the sequential inhibition starts on the upstream side in the 2D case. This is mainly because the melt can pass around the upstream branch in 3D space. However, it can only climb over the upstream tip in 2D space. Additionally, the secondary arms show upstream development, which is more significant with increasing inlet velocity. The level of development of the secondary arms is also affected by the decay of the forced flow in the flow direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.J. Pickering: ISIJ Int., 2013, vol. 53, pp. 935-949.

    Article  Google Scholar 

  2. W.L. Wang, S. Luo and M.Y. Zhu: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 396-406.

    Article  Google Scholar 

  3. S.Q. Wang, G. Alvarez De Toledo, K. Valimaa and S. Louhenkilpi: ISIJ Int., 2014, vol. 54, pp. 2273-2282.

    Article  Google Scholar 

  4. J.A. Spittle: Int. Mater. Rev., 2006, vol. 51, pp. 247-269.

    Article  Google Scholar 

  5. H.Q. Yu and M.Y. Zhu: Ironmak. Steelmak., 2012, vol. 39, pp. 574-584.

    Article  Google Scholar 

  6. H.B. Sun and J.Q. Zhang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1133-1149.

    Article  Google Scholar 

  7. H.P. Liu, M.G. Xu, S.T. Qiu and H. Zhang: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1657-1675.

    Article  Google Scholar 

  8. Z.J. Su, J. Chen, K. Nakajima and J.C. He: Steel Res. Int., 2009, vol. 80, pp. 824-833.

    Google Scholar 

  9. H.J. Wu, N. Wei, Y.P. Bao, G.X. Wang, C.P. Xiao and J.J. Liu: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 159-164.

    Article  Google Scholar 

  10. H. Yasuda, T. Nagira, M. Yoshiya, N. Nakatsuka, A. Sugiyama, K. Uesugi and K. Umetani: ISIJ Int., 2011, vol. 51, pp. 402-408.

    Article  Google Scholar 

  11. N. Shevchenko, O. Roshchupkina, O. Sokolova and S. Eckert: J. Cryst. Growth, 2015, vol. 417, pp. 1-8.

    Article  Google Scholar 

  12. P. Bouissou and P. Pelcé: Phys. Rev. A, 1989, vol. 40, pp. 6673-6680.

    Article  Google Scholar 

  13. C.A. Gandin, G. Guillemot, B. Appolaire and N.T. Niane: Mater. Sci. Eng. A, 2003, vol. 342, pp. 44-50.

    Article  Google Scholar 

  14. M.F. Zhu and D.M. Stefanescu: Acta Mater., 2007, vol. 55, pp. 1741-1755.

    Article  Google Scholar 

  15. T. Takaki: ISIJ Int., 2014, vol. 54, pp. 437-444.

    Article  Google Scholar 

  16. K. Reuther and M. Rettenmayr: J. Comput. Phys., 2014, vol. 279, pp. 63-66.

    Article  Google Scholar 

  17. J.Z. Zhao, L. Li and X.F. Zhang: Acta Metall. Sin., 2014, vol. 50, pp. 641-651.

    Google Scholar 

  18. M.A. Jaafar, D.R. Rousse, S. Gibout and J.-P. Bédécarrats: Renew. Sust. Energ. Rev., 2017, vol. 74, pp. 1064-1079.

    Article  Google Scholar 

  19. D.M. Li, R. Li and P.W. Zhang: Appl. Math. Model., 2007, vol. 31, pp. 971-982.

    Article  Google Scholar 

  20. M.F. Zhu, T. Dai, S.Y. Lee and C.P. Hong: Comput. Math. Appl., 2008, vol. 55, pp. 1620-1628.

    Article  Google Scholar 

  21. D. Sun, M. Zhu, S. Pan and D. Raabe: Acta Mater., 2009, vol. 57, pp. 1755-1767.

    Article  Google Scholar 

  22. Z.P. Guo, J. Mi, S. Xiong and P.S. Grant: Metall. Mater. Trans. B, 2013, vol. 44, pp. 924-937.

    Article  Google Scholar 

  23. W.L. Wang, S. Luo and M.Y. Zhu: Comput. Mater. Sci., 2014, vol. 95, pp. 136-148.

    Article  Google Scholar 

  24. N. Al-Rawahi and G. Tryggvason: J. Comput. Phys., 2004, vol. 194, pp. 677-696.

    Article  Google Scholar 

  25. Y. Lu, C. Beckermann and J.C. Ramirez: J. Cryst. Growth, 2005, vol. 280, pp. 320-334.

    Article  Google Scholar 

  26. C.C. Chen, Y.L. Tsai and C.W. Lan: Int. J. Heat Mass Transf., 2009, vol. 52, pp. 1158-1166.

    Article  Google Scholar 

  27. L. Yuan and P.D. Lee: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18.

  28. Y.F. Shi, Q.Y. Xu and B.C. Liu: Rare Metal Mat. Eng., 2013, vol. 42, pp. 700-705.

    Google Scholar 

  29. X.F. Zhang and J.Z. Zhao: Acta Metall. Sin., 2012, vol. 48, pp. 615-620.

    Article  Google Scholar 

  30. X.F. Zhang and X.K. Li: Int. J. Mater. Res., 2015, vol. 106, pp. 1053-1059.

    Article  Google Scholar 

  31. W.L. Wang, S. Luo and M.Y. Zhu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1355-1366.

    Article  Google Scholar 

  32. X.F. Zhang and J.Z. Zhao: Spec. Cast. Nonferrous Alloys, 2013, vol. 33, pp. 323-327.

    Google Scholar 

  33. Y. Natsume, D. Takahashi, K. Kawashima, E. Tanigawa and K. Ohsasa: ISIJ Int., 2013, vol. 53, pp. 838-847.

    Article  Google Scholar 

  34. W.L. Wang, S. Luo and M.Y. Zhu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1339-1354.

    Article  Google Scholar 

  35. W.Q. Tao: Numerical Heat Transfer. 2nd ed., Xi’an Jiao Tong University Press, Xi’an, 2001.

  36. L. Nastac: Acta Mater., 1999, vol. 47, pp. 4253-4262.

    Article  Google Scholar 

  37. S.Y. Pan and M.F. Zhu: Acta Mater., 2010, vol. 58, pp. 340-352.

    Article  Google Scholar 

  38. A. Barbieri and J. S. Langer: Phys. Rev. A, 1989, vol. 39, pp. 5314-5325.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support from the National Natural Science Foundation of China Nos. U1560208, 51474058, and 51674072, the Outstanding Talent Cultivation Project of Liaoning Province No. 2014029101, and the Fundamental Research Funds for the Central Universities No. N162410002-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaoyong Zhu.

Additional information

Manuscript submitted May 6, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, Z., Luo, S. et al. Influence of Forced Flow on the Dendritic Growth of Fe-C Alloy: 3D vs 2D Simulation. Metall Mater Trans B 48, 3109–3119 (2017). https://doi.org/10.1007/s11663-017-1102-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1102-x

Keywords

Navigation