Advertisement

Metallurgical and Materials Transactions B

, Volume 48, Issue 5, pp 2316–2323 | Cite as

Study of Reaction Between Slag and Carbonaceous Materials

  • Samane MaroufiEmail author
  • Mohannad Mayyas
  • Irshad Mansuri
  • Paul O’Kane
  • Catherine Skidmore
  • Zheshi Jin
  • Andrea Fontana
  • Veena Sahajwalla
Article

Abstract

The chemical interaction of a typical slag of EAF with three different carbon sources, coke, rubber-derived carbon (RDC), coke-RDC blend, was studied in atmospheric pressure at 1823 K (1550 °C). Using an IR-gas analyzer, off-gases evolved from the sample were monitored. While the coke-RDC blend exhibited the best reducing performance in reaction with molten slag, the RDC sample showed poor interaction with the molten slag. The gasification of the coke, RDC, and coke-RDC blend was also carried out under oxidizing conditions using a gas mixture of CO2 (4 wt pct) and Ar (96 wt pct) and it was shown that the RDC sample had the highest rate of gasification step \( C_{0} \mathop{\longrightarrow}\limits{{k_{3} }}{\text{CO}} + nC_{\text{f}} \) (11.6 site/g s (×6.023 × 1023/2.24 × 104)). This may be attributed to its disordered structure confirmed by Raman spectra and its nano-particle morphology observed by FE-SEM. The high reactivity of RDC with CO2 provided evidence that the Boudouard reaction was fast during the interaction with molten slag. However, low reduction rate of iron oxide from slag with RDC can be attributed to the initial weak contact between RDC and molten slag implying that the contact between carbonaceous matter and slag plays significant roles in the reduction of iron oxide from slag.

References

  1. 1.
    D.L. Schroeder: Steel Times, 2000, vol. 32, pp. 368–72.Google Scholar
  2. 2.
    V. Sahajwalla, L. Hong, and C.N. Saha: AISTech, AIST, Association for Iron and Steel Technology, Warrendale, PA, USA, 2005, p. 597.Google Scholar
  3. 3.
    V. Sahajwalla, R. Khanna, M. Rahman, Z. Huang, E. Tanaka, N.C. Saha, D. Knights, and P. O’Kane: AISTech, Association for Iron and Steel Technology,Warrendale, PA, USA, 2005, p. 547.Google Scholar
  4. 4.
    M. Rahman, V. Sahajwalla, R. Khanna, N.C. Saha, D. Knights, and P. O’Kane: AISTech, Association for Iron and Steel Technology, Warrendale, PA, USA, (2005), p. 491.Google Scholar
  5. 5.
    S. Gupta, V. Sahajwalla, and J. Wood: Energy Fuel, 2006, vol. 20, pp. 2557–63.CrossRefGoogle Scholar
  6. 6.
    M. Zaharia, V. Sahajwalla, R. Khanna, P. Koshy, and P. O’Kane: ISIJ Int., 2009, 49 pp. 1513–21.CrossRefGoogle Scholar
  7. 7.
    M. Zaharia, V. Sahajwalla, B-C. Kim, R. Khanna, N.C. Saha, P. O’Kane, J. Dicker, C. Skidmore, and D. Knights: Energy Fuel, 2009, vol. 23 (5), pp. 2467–74.CrossRefGoogle Scholar
  8. 8.
    V. Sahajwalla, M. Zaharia, S. Kongkarat, R. Khanna, N.C. Saha, and P. O’Kane: Energy Fuel, 2010, vol. 24, 379–91.CrossRefGoogle Scholar
  9. 9.
    S. Maroufi, I. Mansuri, P. O’Kane, C. Skidmore, Z. Jin, A. Fontana, M. Zaharia, and V. Sahajwalal: 10th International Conference on Molten Slag, Fluxes and Salts, TMS (The Minerals, Metals & Materials Society), Seattle, USA, 2016.Google Scholar
  10. 10.
    M. Ozawa, S. Kitagawa, S. Nakayama, and Y. Takesono: ISIJ, 1986, vol. 26 pp. 621–28.CrossRefGoogle Scholar
  11. 11.
    F.T. Lee and C.H. Lee: Steel Times Int, 1995, pp. 20–25.Google Scholar
  12. 12.
    F.-Z. Ji, M. Barati, K. Coley, and A.G. Irons: VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, 2004, pp. 399–406.Google Scholar
  13. 13.
    M. Rahman: PhD thesis, The University of New South Wales, Sydney, Australia, 2009.Google Scholar
  14. 14.
    S.L. Teasdale, and P.C. Hayes: ISI Int., 2005, vol. 45, pp. 634–41.CrossRefGoogle Scholar
  15. 15.
    T. Nagasaka, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B., 2001, vol. 31B(5), pp. 945–55.Google Scholar
  16. 16.
    V. Sahajwalla, M. Zaharia, S. Kongkarat, R. Khanna, M. Rahman, N.S. Chaudhury, P. O’Kane, J. Dicker, C. Skidmore, and D. Knights: Energy & Fuels, 2012, vol. 26, pp. 58–66.CrossRefGoogle Scholar
  17. 17.
    R.K. Paramguru, R.K. Galgali, and H.S. Ray: Metall. Mater. Trans. B., 1997, vol. 28B, pp. 805–10.CrossRefGoogle Scholar
  18. 18.
    S. Ergun: J. Phys. Chem, 1956, vol. 60, pp. 480–5.CrossRefGoogle Scholar
  19. 19.
    S. Ergun: Ind. Eng. Chem, 1955, vol. 47, pp. 2075–80.CrossRefGoogle Scholar
  20. 20.
    S. Ergun: Chem. Eng. Progr., 1952, vol. 48, pp. 227–36.Google Scholar
  21. 21.
    S. Ergun: Anal. Chem, 1951, vol. 23, pp. 151–56.CrossRefGoogle Scholar
  22. 22.
    A.E. Reif: J. Phys. Chem, 1952, vol 56, pp. 785–88.CrossRefGoogle Scholar
  23. 23.
    H. Freund: Fuel, 1986, vol. 65, pp. 63–66.CrossRefGoogle Scholar
  24. 24.
    M. Mentser, and S. Ergun: Carbon, 1967, vol. 5 pp. 331–37.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Samane Maroufi
    • 1
    Email author
  • Mohannad Mayyas
    • 1
  • Irshad Mansuri
    • 1
  • Paul O’Kane
    • 2
  • Catherine Skidmore
    • 2
  • Zheshi Jin
    • 2
  • Andrea Fontana
    • 3
  • Veena Sahajwalla
    • 1
  1. 1.Centre for Sustainable Materials Research and Technology (SMaRT), School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.OneSteelSydneyAustralia
  3. 3.OneSteelMelbourneAustralia

Personalised recommendations