Advertisement

Metallurgical and Materials Transactions B

, Volume 48, Issue 4, pp 2195–2206 | Cite as

Kinetic Modeling for the Dissolution of MgO Lining Refractory in Al-Killed Steels

  • Fuxiang Huang
  • Lifeng Zhang
  • Ying Zhang
  • Ying RenEmail author
Article

Abstract

A kinetic model for the dissolution of the magnesia refractory in Al-killed steels was developed to predict the change of chemical compositions in the molten steel. Coupled reaction model and empirical equations were employed to calculate reactions between the refractory and the molten steel. The calculated result showed good agreement with the experimental value from the literature. The relationship between the mass transfer coefficient and the stirring energy dissipation in the molten steel was obtained as \( k = \left( {5.6 - 4.7 \times e^{{ - 96.6\dot{\varepsilon }}} } \right) \times 10^{ - 4} \) m/s. The formation of spinels is dependent on the chemical composition of the molten steel. The MgO refractory may react with Al and O in the liquid steel. Meanwhile, the decomposing of the MgO refractory also plays an important role in the dissolution of the magnesia refractory in Al-killed steels.

Notes

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant Nos. 51274034, 51334002, 51604023, 51504020, and 51404019), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

References

  1. 1.
    L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-91.CrossRefGoogle Scholar
  2. 2.
    L. Zhang: J.Iron Steel Inst., 2006, vol. 13, pp. 1-8.Google Scholar
  3. 3.
    Y. Chen, G.A. Brooks, and S.A. Nightingale: Can. Metall. Q., 2005, vol. 44, pp. 323-29.CrossRefGoogle Scholar
  4. 4.
    P. Zhang and S. Seetharaman: J. Am. Ceram. Soc., 1994, vol. 77, pp. 970-76.CrossRefGoogle Scholar
  5. 5.
    J.-D. Shim and S. Ban-ya: Tetsu-to-Hagane, 1981, vol. 67, pp. 1735-44.CrossRefGoogle Scholar
  6. 6.
    S.A. Nightingale, G.A. Brooks, and B.J. Monaghan: Metall. Mater. Trans. B, 2005, vol. 36, pp. 453-61.CrossRefGoogle Scholar
  7. 7.
    S.A. Nightingale and B.J. Monaghan: Metall. Mater. Trans. B, 2008, vol. 39, pp. 643-48.CrossRefGoogle Scholar
  8. 8.
    S. Yan, S. Sun, and S. Jahanshahi: Metall. Mater. Trans. B, 2005, vol. 36, pp. 651-56.CrossRefGoogle Scholar
  9. 9.
    J. Bygden, T. DebRoy, and S. Seetharaman: Ironmak. and Steelmak., 1994, vol. 21, pp. 318-23.Google Scholar
  10. 10.
    S. Amini, M. Brungs, S. Jahanshahi, and O. Ostrovski: ISIJ Int., 2006, vol. 46, pp. 1554-59.CrossRefGoogle Scholar
  11. 11.
    M. Umakoshi, K. Mori, and Y. Kawai: Tetsu-to-Hagane, 1981, vol. 67, pp. 1726-34.CrossRefGoogle Scholar
  12. 12.
    R.J. Fruehan, Y. Li, and L. Brabie: ISSTech 2003 Conference Proceedings, 2003, pp. 799-812.Google Scholar
  13. 13.
    S. Jansson, V. Brabie, and P. Jonsson: Scand. J. Metall., 2005, vol. 34, pp. 283-92.CrossRefGoogle Scholar
  14. 14.
    S. Jansson, V. Brabie, and P. Jonsson: Ironmak. and Steelmak., 2006, vol. 33, pp. 389-97.CrossRefGoogle Scholar
  15. 15.
    H. Um, K. Lee, and Y. Chung: ISIJ Int., 2012, vol. 52, pp. 62-67.CrossRefGoogle Scholar
  16. 16.
    A. Harada, N. Maruoka, H. Shibata, M. Zeze, N. Asahara, F. Huang and S.-y. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2569-77.CrossRefGoogle Scholar
  17. 17.
    I. Kasimagwa, V. Brabie, and P.G. Jonsson: Ironmak. and Steelmak., 2014, vol. 41, pp. 121-31.CrossRefGoogle Scholar
  18. 18.
    C. Liu, F. Huang, J. Suo and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 989-98.CrossRefGoogle Scholar
  19. 19.
    C. Liu, F. Huang, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 999-1009.CrossRefGoogle Scholar
  20. 20.
    J.H. Shin, Y. Chung, and J.H. Park: Metall. Mater. Trans. B, 2016, pp. 1–14.Google Scholar
  21. 21.
    A. Harada, N. Maruoka, H. Shibata and S.-y. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2110-17.CrossRefGoogle Scholar
  22. 22.
    A. Harada, G. Miyano, N. Maruoka, H. Shibata and S.-y. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2230-38.CrossRefGoogle Scholar
  23. 23.
    S.-y. Kitamura, H. Shinata, and N. Maruoka: Steel Res. Int., 2008, vol. 79, pp. 586-90.CrossRefGoogle Scholar
  24. 24.
    S. Ohguchi, D.G.C. Robertson, B. Deo, P. Grieveson and J.H.E. Jeffes: Ironmak. and Steelmak., 1984, vol. 11, pp. 202-13.Google Scholar
  25. 25.
    I. Hiroyasu, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28, pp. 953-56.CrossRefGoogle Scholar
  26. 26.
    M. Jiang, X. Wang, B. Chen and W. Wang: ISIJ Int., 2008, vol. 48, pp. 885-90.CrossRefGoogle Scholar
  27. 27.
    H. Matsuno and Y. Kikuchi: Tetsu-to-Hagane, 2002, vol. 88, pp. 48-50.CrossRefGoogle Scholar
  28. 28.
    J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-46.CrossRefGoogle Scholar
  29. 29.
    G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8, pp. 298-310.CrossRefGoogle Scholar
  30. 30.
    S. Taira, K. Nakashima, and K. Mori: ISIJ Int., 1993, vol. 33, pp. 116-23.CrossRefGoogle Scholar
  31. 31.
    L. Zhang, Y. Ren, H. Duan, W. Yang and L. Sun: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1809-25.CrossRefGoogle Scholar
  32. 32.
    T. Nakaoka, S. Taniguchi, K. Matsumoto and S.T. Johasen: ISIJ Int., 2001, vol. 41, pp. 1103-11.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Fuxiang Huang
    • 1
  • Lifeng Zhang
    • 1
  • Ying Zhang
    • 1
  • Ying Ren
    • 1
    Email author
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology Beijing (USTB)BeijingChina

Personalised recommendations