Metallurgical and Materials Transactions B

, Volume 48, Issue 3, pp 1868–1884 | Cite as

A Mathematical Model for Reactions During Top-Blowing in the AOD Process: Validation and Results

  • Ville-Valtteri VisuriEmail author
  • Mika Järvinen
  • Aki Kärnä
  • Petri Sulasalmi
  • Eetu-Pekka Heikkinen
  • Pentti Kupari
  • Timo Fabritius


In earlier work, a fundamental mathematical model was proposed for side-blowing operation in the argon oxygen decarburization (AOD) process. In the preceding part “Derivation of the Model,” a new mathematical model was proposed for reactions during top-blowing in the AOD process. In this model it was assumed that reactions occur simultaneously at the surface of the cavity caused by the gas jet and at the surface of the metal droplets ejected from the metal bath. This paper presents validation and preliminary results with twelve industrial heats. In the studied heats, the last combined-blowing stage was altered so that oxygen was introduced from the top lance only. Four heats were conducted using an oxygen–nitrogen mixture (1:1), while eight heats were conducted with pure oxygen. Simultaneously, nitrogen or argon gas was blown via tuyères in order to provide mixing that is comparable to regular practice. The measured carbon content varied from 0.4 to 0.5 wt pct before the studied stage to 0.1 to 0.2 wt pct after the studied stage. The results suggest that the model is capable of predicting changes in metal bath composition and temperature with a reasonably high degree of accuracy. The calculations indicate that the top slag may supply oxygen for decarburization during top-blowing. Furthermore, it is postulated that the metal droplets generated by the shear stress of top-blowing create a large mass exchange area, which plays an important role in enabling the high decarburization rates observed during top-blowing in the AOD process. The overall rate of decarburization attributable to top-blowing in the last combined-blowing stage was found to be limited by the mass transfer of dissolved carbon.


Decarburization Slag Sample Metal Droplet Metal Bath Decarburization Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


\( c_{{{\text{p}},{\text{L}}}} \)

Specific heat capacity of liquid metal (J/(kg K))

\( d_{\text{t}} \)

Nozzle throat diameter (m)

\( d_{\text{p}} \)

Diameter of the particle (m)

\( C_{i,\omega } \)

Control factor of species i at the reaction interface ω

\( J_{\text{eff}} \)

Multiplication factor of the metal droplet generation rate

\( h_{\text{lance}} \)

Distance of the top lance from the surface of the metal bath (m)

\( {{\Delta }}h_{\text{dis}} \)

Specific enthalpy of dissolution into liquid iron (J/kg)

\( l_{\text{m}} \)

Latent heat of melting (J/kg)

\( m_{\text{a}} \)

Mass of the added material (kg)

\( m_{\text{bath}} \)

Mass of the metal bath (kg)

\( \dot{m}_{\text{md}} \)

Metal droplet generation rate (kg/s)

\( \dot{m}_{{{\text{md}},{\text{eff}}}} \)

Effective metal droplet generation rate (kg/s)


Mean absolute error

\( n_{\text{lance}} \)

Number of exit ports in a nozzle

\( N_{\text{B}}^{\prime } \)

Modified blowing number

\( p_{0} \)

Stagnation pressure at upstream part of the top lance (Pa)


Reynolds number


Root-mean-square error

\( R^{2} \)

Correlation coefficient (square of the Pearson product-moment correlation coefficient)


Schmidt number


Sherwood number

\( T_{\text{a}} \)

Temperature of the added material (K)

\( T_{\text{bath}} \)

Temperature of the metal bath (K)

\( T_{\text{bath}}^{\text{new}} \)

Updated temperature of the metal bath (K)

\( T_{\text{m}} \)

Melting temperature of the particle (K)

\( \dot{V}_{{{\text{G}},{\text{lance}}}}^{\prime } \)

Volumetric gas flow rate through top lance (Nm3/s)

\( y_{i} \)

Mass fraction of species i in the bulk phase

\( y_{i}^{*} \)

Mass fraction of species i at the reaction interface

\( \theta \)

Inclination angle of each nozzle relative to lance axis (deg)

\( \rho_{\text{p}} \)

Density of the particle (kg/m3)

\( \lambda_{\text{e}} \)

Effective heat conductivity (W/(m K))

\( \tau_{\text{m}} \)

Melting time of additions (seconds)



This research has been conducted within the framework of the DIMECC SIMP research program. Outokumpu Stainless Oy, the Finnish Funding Agency for Technology and Innovation (TEKES), the Graduate School in Chemical Engineering (GSCE), the Academy of Finland (Projects 258,319 and 26,495), the Finnish Foundation for Technology Promotion, the Finnish Science Foundation for Economics and Technology, and the Tauno Tönning Foundation are gratefully acknowledged for funding this work. The first author thanks Professor Herbert Pfeifer for the possibility to conduct part of the research at RWTH Aachen University. Tommi Kokkonen is acknowledged for preparation of the slag microsections. In addition, Professor Rauf Hürman Eriç, Kevin Christmann, and Tim Haas are acknowledged for their valuable comments on this manuscript.


  1. 1.
    B.V. Patil, A.H. Chan, and R.J. Choulet: in Refining of Stainless Steels, R.J. Fruehan, ed., The Making, Shaping and Treating of Steel. 11th Edition Steel Making and Refining, The AISE Steel Foundation, Pittsburgh, PA, USA, 1998.Google Scholar
  2. 2.
    [2] W. A. Krivsky: Metall. Trans., 1973, vol. 4, pp. 1439-1447.Google Scholar
  3. 3.
    [3] R. J. Choulet, F. S. Death and R. N. Dokken: Can. Metall. Q., 1971, vol. 10, pp. 129-136.CrossRefGoogle Scholar
  4. 4.
    S.K. Mehlman: Pneumatic Steelmaking Volume Two: The AOD Process, Iron and Steel Society, Warrendale, PA, 1991, p. 55.Google Scholar
  5. 5.
    [5] C. Wuppermann, A. Rückert, H. Pfeifer and H.-J. Odenthal: ISIJ Int., 2013, vol. 53, pp. 441-449.CrossRefGoogle Scholar
  6. 6.
    G. Staudinger and S. Dimitrov: AISTech2007, Indianapolis, IN, 2007, p. 14.Google Scholar
  7. 7.
    [7] T. Watanabe and T. Tohge: Tetsu-to-Hagané, 1973, vol. 59, pp. 1224-1236.Google Scholar
  8. 8.
    T. Tohge, Y. Fujita, and T. Watanabe: Proceedings of the 4th Process Technology Conference, Chicago, IL, 1984, pp. 129–36.Google Scholar
  9. 9.
    [9] N. Kikuchi, K. Yamaguchi, Y. Kishimoto, S. Takeuchi and H. Nishikawa: Tetsu-to-Hagané, 2002, vol. 88, pp. 32-39.Google Scholar
  10. 10.
    Y. Uchida, N. Kikuchi, K. Yamaguchi, Y. Kishimoto, S. Takeuchi, and H. Nishikawa: Proceedings of the 2nd International Conference on Process Development in Iron and Steelmaking, Luleå, Sweden, 2004, pp. 69–78.Google Scholar
  11. 11.
    [11] H.-L. Zhu, J.-H. Wei, G.-M. Shi, J.-H. Shu, Q.-Y. Jiang and H.-B. Chi: Steel Res. Int., 2007, vol. 78, pp. 305-310.CrossRefGoogle Scholar
  12. 12.
    [12] C.-B. Shi, X.-M. Yang, J.-S. Jiao, C. Li and H.-J. Guo: ISIJ Int., 2010, vol. 50, pp. 1362-1372.CrossRefGoogle Scholar
  13. 13.
    [13] J.-H. Wei, Y. Cao, H.-L. Zhu and H.-B. Chi: ISIJ Int., 2011, vol. 51, pp. 365-374.CrossRefGoogle Scholar
  14. 14.
    V.-V. Visuri, M. Järvinen, A. Kärnä, P. Sulasalmi, E.-P. Heikkinen, P. Kupari, and T. Fabritius: Metall. Mater. Trans. B., in press, DOI: 10.1007/s11663-017-0960-6.
  15. 15.
    [15] E. Schürmann and K. Rosenbach: Arch. Eisenhüttenwes., 1973, vol. 44, pp. 761-768.CrossRefGoogle Scholar
  16. 16.
    [16] S. Masuda, M. Taga, H. Nakajima and K. Ieda: Tetsu-to-Hagané, 1986, vol. 72, pp. 1301-1308.Google Scholar
  17. 17.
    G. Lindstrand, P.G. Jönsson, and A. Tilliander: Proceedings of the ISIJ-VDEh-Jernkontoret Joint Symposium, Osaka, Japan, 2013, pp. 106–13.Google Scholar
  18. 18.
    [18] W. Münchberg, K. Koch, H. Zörcher and W. Rubens: Stahl Eisen, 1992, vol. 112, pp. 49-59.Google Scholar
  19. 19.
    [19] V.-V. Visuri, M. Järvinen, P. Sulasalmi, E.-P. Heikkinen, J. Savolainen and T. Fabritius: ISIJ Int., 2013, vol. 53, pp. 603-612.CrossRefGoogle Scholar
  20. 20.
    [20] V.-V. Visuri, M. Järvinen, J. Savolainen, P. Sulasalmi, E.-P. Heikkinen and T. Fabritius: ISIJ Int., 2013, vol. 53, pp. 613-621.CrossRefGoogle Scholar
  21. 21.
    [21] M. Järvinen, A. Kärnä, V.-V. Visuri, P. Sulasalmi, E.-P. Heikkinen, K. Pääskylä, C. De Blasio, S. Ollila and T. Fabritius: ISIJ Int., 2014, vol. 54, pp. 2263-2272.CrossRefGoogle Scholar
  22. 22.
    [22] O. V. Zayakin, V. I. Zhuchkov and E. Y. Lozovaya: Steel Transl., 2007, vol. 37, pp. 416-418.CrossRefGoogle Scholar
  23. 23.
    [23] J. Li, G. Brooks and N. Provatas: Metall. Mater. Trans. B, 2005, vol. 36, pp. 293-302.CrossRefGoogle Scholar
  24. 24.
    GTT-Technologies GmbH: FactSage 7.0, 2015.Google Scholar
  25. 25.
    [25] J.-H. Wei and D.-P. Zhu: Metall. Mater. Trans. B, 2002, vol. 33, pp. 111-119.CrossRefGoogle Scholar
  26. 26.
    B.K. Rout, G. Brooks, Subagyo, M.A. Rhamdhani, and Z. Li: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3350-3361.CrossRefGoogle Scholar
  27. 27.
    [27] S. Sarkar, P. Gupta, S. Basu and N. B. Ballal: Metall. Mater. Trans. B, 2015, vol. 46, pp. 961-976.CrossRefGoogle Scholar
  28. 28.
    [28] K. Koch, W. Münchberg, H. Zörcher and W. Rubens: Stahl Eisen, 1992, vol. 112, pp. 91-99.Google Scholar
  29. 29.
    P. Ternstedt, R. Gyllenram, J. Bengtsson, and P.G. Jönsson: Proceedings of the 4th International Conference on Modelling and Simulation of Metallurgical Processes in Steelmaking, Düsseldorf, Germany, 2011, pp. 1–5.Google Scholar
  30. 30.
    B. Kleimt, R. Lichterbeck, and C. Burkat: Proceedings of the 5th European Oxygen Steelmaking Conference, Aachen, Germany, 2006, pp. 511–18.Google Scholar
  31. 31.
    [30] T. Deb Roy, D. G. C. Robertson and J. C. C. Leach: Ironmaking Steelmaking, 1978, vol. 5, pp. 207-210.Google Scholar
  32. 32.
    [31] A. E. Semin, A. P. Pavlenko, T. Andzhum and E. A. Shuklina: Steel USSR, 1983, vol. 13, pp. 95-97.Google Scholar
  33. 33.
    P. Sjöberg: Some aspects on the scrap based production of stainless steels, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden, 1994.Google Scholar
  34. 34.
    [34] J.-H. Wei and D.-P. Zhu: Metall. Mater. Trans. B, 2002, vol. 33, pp. 121-127.CrossRefGoogle Scholar
  35. 35.
    [35] C. Delhaes, A. Hauck and D. Neuschütz: Steel Res., 1993, vol. 64, pp. 22-27.CrossRefGoogle Scholar
  36. 36.
    [36] M. Brunner: Scan. J. Metall., 1998, vol. 27, pp. 37-43.Google Scholar
  37. 37.
    [37] D. R. Swinbourne, T. S. Kho, B. Blanpain, S. Arnout and D. E. Langberg: Miner. Process. Extr. Metall., 2012, vol. 121, pp. 23-31.CrossRefGoogle Scholar
  38. 38.
    O. Wijk: in Principles of Metal Refining, T. A. Engh, ed., Oxford University Press, Oxford, United Kingdom, 1992.Google Scholar
  39. 39.
    [39] K. Koch, F.-J. Hahn, H. Maas and P. Schmöle: Arch. Eisenhüttenwes., 1983, vol. 54, pp. 99-102.CrossRefGoogle Scholar
  40. 40.
    [41] T. Kuwano, S. Maruhashi and Y. Aoyama: Tetsu-to-Hagané, 1973, vol. 59, pp. 863-873.CrossRefGoogle Scholar
  41. 41.
    [40] S.-Y. Kitamura, K. Okohira and A. Tanaka: Trans. Iron Steel Inst. Jpn, 1986, vol. 26, pp. 33-39.CrossRefGoogle Scholar
  42. 42.
    [44] J.-H. Wei and H.-Y. Zuo: Steel Res. Int., 2007, vol. 78, pp. 863-875.CrossRefGoogle Scholar
  43. 43.
    [45] J.-H. Wei, H.-L. Zhu, H.-B. Chi and H.-J. Wang: ISIJ Int., 2010, vol. 50, pp. 26-34.CrossRefGoogle Scholar
  44. 44.
    [46] J.-H. Wei, Y. He and G.-M. Shi: Steel Res. Int., 2011, vol. 82, pp. 693-702.CrossRefGoogle Scholar
  45. 45.
    T. Haas, V.-V. Visuri, A. Kärnä, E. Isohookana, P. Sulasalmi, R. H. Eric, H. Pfeifer, and T. Fabritius: in Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, R.G. Reddy, P. Chaubal, P.C. Pistorius, and U. Pal, eds., The Minerals, Metals & Materials Society, Seattle, WA, 2016, pp. 999–1008.Google Scholar
  46. 46.
    [48] T. M. J. Fabritius, P. T. Mure, P. A. Kupari, V. A. Juntunen and J. J. Härkki: Steel Res., 2001, vol. 72, pp. 237-244.CrossRefGoogle Scholar
  47. 47.
    [43] D. Li, H. Chi and S. Shao: Mater. Sci. Forum, 2007, vol. 561-565, pp. 1039-1042.CrossRefGoogle Scholar
  48. 48.
    E. Virtanen, T. Fabritius, and J. Härkki: Proceedings of the 2nd International Conference on Process Development in Iron and Steelmaking, Luleå, Sweden, 2004, pp. 155–64.Google Scholar
  49. 49.
    [50] P. R. Scheller and F.-J. Wahlers: ISIJ Int., 1996, vol. 36, pp. S69-S72.CrossRefGoogle Scholar
  50. 50.
    [51] S. C. Koria and K. W. Lange: Metall. Trans. B, 1984, vol. 15, pp. 109-116.CrossRefGoogle Scholar
  51. 51.
    [52] S. C. Koria and K. W. Lange: Arch. Eisenhüttenwes., 1984, vol. 55, pp. 581-584.CrossRefGoogle Scholar
  52. 52.
    [53] S. C. Koria and K. W. Lange: Ironmaking Steelmaking, 1986, vol. 13, pp. 236-240.Google Scholar
  53. 53.
    [54] S. C. Koria and K. W. Lange: Ironmaking Steelmaking, 1983, vol. 10, pp. 160-168.Google Scholar
  54. 54.
    [55] K.-Y. Lee, H.-G. Lee and P. C. Hayes: ISIJ Int., 1998, vol. 38, pp. 1242-1247.CrossRefGoogle Scholar
  55. 55.
    F. Ji, M. Rhamdhani, Subagyo, M. Barati, K.S. Coley, G.A. Brooks, G.A. Irons, and S. Nightingale: High Temp. Mater. Proc., 2003, vol. 22, pp. 359-367.CrossRefGoogle Scholar
  56. 56.
    [57] M. Alam, J. Naser and G. Brooks: Metall. Mater. Trans. B, 2010, vol. 41, pp. 636-645.CrossRefGoogle Scholar
  57. 57.
    Subagyo, G. A. Brooks, K. S. Coley and G. A. Irons: ISIJ Int., 2003, vol. 43, pp. 983-989.CrossRefGoogle Scholar
  58. 58.
    [59] Q. L. He and N. Standish: ISIJ Int., 1990, vol. 30, pp. 305-309.CrossRefGoogle Scholar
  59. 59.
    [60] T. M. J. Fabritius, M. J. Luomala, E. O. Virtanen, H. Tenkku, T. L. J. Fabritius, T. P. Siivola and J. J. Härkki: ISIJ Int., 2002, vol. 42, pp. 861-867.CrossRefGoogle Scholar
  60. 60.
    [61] M. Alam, J. Naser, G. Brooks and A. Fontana: ISIJ Int., 2012, vol. 52, pp. 1026-1035.CrossRefGoogle Scholar
  61. 61.
    [62] C. K. Lee, J. H. Neilson and A. Gilchrist: Iron Steel Int., 1977, vol. 50, pp. 399-410.Google Scholar
  62. 62.
    [63] A. Kärnä, M. Järvinen and T. Fabritius: Mater. Sci. Forum, 2013, vol. 762, pp. 686-690.CrossRefGoogle Scholar
  63. 63.
    H. Lohe: Fortschr. -Ber. VDI-Z., 1967, Ser. 3, No. 15, pp. 1–59.Google Scholar
  64. 64.
    [65] R. L. Steinberger and R. E. Treybal: AIChE Journal, 1960, vol. 6, pp. 227-232.CrossRefGoogle Scholar
  65. 65.
    [66] L. A. Baker, N. A. Warner and A. E. Jenkins: Trans. Met. Soc. AIME, 1964, vol. 230, pp. 1228-1235.Google Scholar
  66. 66.
    [67] L. A. Baker, N. A. Warner and A. E. Jenkins: Trans. Met. Soc. AIME, 1967, vol. 239, pp. 857-864.Google Scholar
  67. 67.
    [68] P. Wu, Y. Yang, M. Barati and A. McLean: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2211-2221.CrossRefGoogle Scholar
  68. 68.
    [69] R. Kronig and J. C. Brink: Appl. Sci. Res., 1951, vol. 2, pp. 142-154.CrossRefGoogle Scholar
  69. 69.
    [70] P. H. Calderbank: Chem. Engr., 1967, vol. 45, pp. 209-233.Google Scholar
  70. 70.
    F. Oeters: Metallurgie der Stahlherstellung, Verlag Stahleisen mbH, Düsseldorf, Germany, 1989, p. 336.CrossRefGoogle Scholar
  71. 71.
    W. Rubens: Untersuchung der Schlackenwege und des Verschleißes des feuerfesten Ausmauerung bei modifizierten AOD-Verfahren zur Erzeugung rostfreier Stähle, Doctoral Thesis, Clausthal University of Technology, Clausthal-Zellerfeld, Germany, 1988, p. 45.Google Scholar
  72. 72.
    G. Brooks, Y. Pan, Subagyo, and K. Coley: Metall. Mater. Trans. B, 2005, vol. 36, pp. 525-535.CrossRefGoogle Scholar
  73. 73.
    [74] N. Dogan, G. A. Brooks and M. A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1093-1101.CrossRefGoogle Scholar
  74. 74.
    [42] K. Yamada, H. Azuma, T. Hiyama and N. Nishimae: Tetsu-to-Hagané, 1983, vol. 69, pp. 775-781.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Ville-Valtteri Visuri
    • 1
    Email author
  • Mika Järvinen
    • 2
  • Aki Kärnä
    • 1
  • Petri Sulasalmi
    • 1
  • Eetu-Pekka Heikkinen
    • 1
  • Pentti Kupari
    • 3
  • Timo Fabritius
    • 1
  1. 1.Process Metallurgy Research UnitUniversity of OuluOuluFinland
  2. 2.Department of Mechanical EngineeringAalto UniversityAaltoFinland
  3. 3.Outokumpu Stainless OyTorneFinland

Personalised recommendations