Metallurgical and Materials Transactions B

, Volume 48, Issue 2, pp 1024–1034 | Cite as

Fractional Crystallization Model of Multicomponent Aluminum Alloys: A Case Study of Aircraft Recycling

  • Jose Alberto Muñiz-Lerma
  • Manas Paliwal
  • In-Ho Jung
  • Mathieu Brochu


A one-dimensional numerical solidification model has been developed to predict the recovery and refining efficiency of fractional crystallization applied to a blend of aircraft Al scraps with variations of Fe and Si. The model incorporates the effective partition coefficient depending on the degree of melt stirring. Moreover, the kinetic factors that affect the formation of primary Al FCC during fractional crystallization such as solidification velocity, thermal gradient, cooling rate, and solute back-diffusion are taken into account. The simulation results suggest that the optimum solidification velocities that are able to yield the highest refining can be ranged between 1.0 × 10−6 and 1.0 × 10−5 m/s with medium to high stirring levels. The maximum recovery of refined Al has been estimated to be 31 wt pct of the initial scrap when the process is carried out at 1 × 10−6 m/s and the initial concentrations of Fe and Si are 1 and 2 pct, respectively.


Fractional Crystallization Diffusion Boundary Layer Refining Efficiency Solidification Velocity Fractional Crystallization Process 



The authors would like to thank the Consortium de Recherche et d’Innovation en Aérospatiale au Québec (CRIAQ), Bombardier, Bell Helicopter, Sotrem-Maltech, BFI, Nano Quebec, and Aluminerie Alouette for their project funding.


  1. 1.
    U. Aviation: Aircraft Technology-Engineering & Maintenance, 2011, pp. 60–65.Google Scholar
  2. 2.
    AFRA: Aircraft Fleet Recycling Association., 2014.
  3. 3.
    AFRA: Aircraft Fleet Recycling Association.: Aircraft Retirement Tsunami. A 1000 Aircraft a Year to leave Service by 2023., 2014.
  4. 4.
    S.A.S. Airbus: Eco-efficiency and Sustainability-G9-Issue 1. Process for Advanced Management of End of Life of Aircraft.
  5. 5.
    CRIAQ-ENV412. Process for Advanced Management and Technologies of Aircraftend-of-Life., 2015.
  6. 6.
    S. Das, and J.G. Kaufman: Light Met., 2007, vol. 5, pp. 1161–66.Google Scholar
  7. 7.
    J.A.S. Green: Aluminum Recycling and Processing for Energy Conservation and Sustainability. 1-271, ASM International, Materials Park, 2007.Google Scholar
  8. 8.
    J.T. Staley: Microstructure and Toughness of High-Strength Aluminum Alloys, ASTM STP 605, in Properties Related to Fracture Toughness. 1976, American Society for Testing and Materials: Montreal, CA. p. 71-103.CrossRefGoogle Scholar
  9. 9.
    Zhang, L., Gao, J., Damoah, L.N.W. Robertson, D.G., Miner. Process. Extr. Metall. Rev., 2012. Vol. 33(2): p. 99-157.CrossRefGoogle Scholar
  10. 10.
    B. Mehmetaj, O.S. Bruinsmab, W.H. Koola, P.J. Jansensb, and L. Katgermana: 15th International Symposium on Industrial Crystallization (ISIC-15), Sorrento, Italy, 2002.Google Scholar
  11. 11.
    Sillekens, W.H., Van Westrum, J.A.F.M.S., Bruinsma, O.S.L., Mehmetaj, B. and Nienoord, M.: in Recycling of Metals and Engineered Materials, D. L. Stewart, J. C. Daley and R. L. Stephens, eds., John Wiley & Sons, Inc., Hoboken, NJ, 2000, DOI: 10.1002/9781118788073.ch85.Google Scholar
  12. 12.
    Kahveci, A. I. and Unal, A.: Recycling of Metals and Engineered Materials, D. L. Stewart, J. C. Daley and R. L. Stephens, eds., John Wiley & Sons, Inc., Hoboken, NJ, 2000, DOI: 10.1002/9781118788073.ch86.Google Scholar
  13. 13.
    P.A. De Vries and H.A. Wouters: Method for Fractional Crystallisation of a Molten Metal. U.S. Patent 7,419,530 B2, Aleris Switzerland GmbH c/o K+P Treuhangesellschaft, Schaffhausen, CH, 2008.Google Scholar
  14. 14.
    H.A. Wouters, E.M. Beunder, W. Boender, M.A. Hogenboom, R. Kieft, and J.C. Storm: Crystallisation Method for the Purification of a Molten Metal, in Particular Recycled Aluminium. U.S. Patent 7,892,318 B2, Aleris Switzerland GmbH c/o K+P Treuhandgesellchaft, CH, 2011.Google Scholar
  15. 15.
    J.F. Verdier, J.R. Butruille, M. Leroy, and D. Valax: Process for Recycling Aluminum Alloy Scrap Coming from the Aeronautical Industry. U.S. Patent 8,202,347 B2, Constellium France, 2012.Google Scholar
  16. 16.
    A. Regner: Method of Separating Constituents of Alloys by Fractional Crystallization. U.S. Patent 2,471,899, United Chemical and Metallurgical Works National Corporation, Prague, Czechoslovakia, 1949.Google Scholar
  17. 17.
    Qiu, K., Duan, W., Chen Q. Basic principles of control of continuous crystallizer in metal refining. Mineral Processing and Extractive Metallurgy, 2001. 110, 161-64, DOI: 10.1179/mpm.2001.110.3.161.
  18. 18.
    W.H. Sillekens, D. Verdoes, W. Van, and J.F.M. Schade: Proceeding of the Fourth ASM International Conference and Exhibition on the Recycling of Metals, ASM Europe, 1999.Google Scholar
  19. 19.
    W. Boender, C.J. Waringa, G.P. Krielaart, A. Folkertsma, and D. Verdoes: Light Metals: Proceedings of Sessions, TMS Annual Meeting. Warrendale, Pennsylvania, 2002.Google Scholar
  20. 20.
    Bale, C.W., et al., Calphad, 2009. Vol. 33(2): p. 295-311.CrossRefGoogle Scholar
  21. 21.
    Paliwal, M., Kang, D., Essadiqi, E., Jung, In-Ho, Metall and Mat Trans A, 2014. Vol. 45(8): p. 3308-20.CrossRefGoogle Scholar
  22. 22.
    Paliwal, M., and Jung, In-Ho, J. Cryst. Growth, 2014. Vol. 394: p. 28-38.CrossRefGoogle Scholar
  23. 23.
    Paliwal, M., Kang, D., Essadiqi, E., Jung, In-Ho, Metall and Mat Trans A, 2014. Vol. 45(8): p. 3596-08.CrossRefGoogle Scholar
  24. 24.
    Burton, J.A., Prim, R. C., Slichter, W. P., The Journal of Chemical Physics, 1953. Vol. 21(11): p. 1987-1991.CrossRefGoogle Scholar
  25. 25.
    Kattamis, T., and Flemings, M., Transactions of the Metallurgical Society of AIME, 1965. Vol. 233(5): p. 992. Google Scholar
  26. 26.
    Rappaz, M., and Boettinger, W. J., Acta Mater., 1999. Vol. 47(11): p. 3205-19.CrossRefGoogle Scholar
  27. 27.
    Pfann, W.G., Normal Freezing and the Distribution Coefficient, in Zone Melting. 1958, John Wiley & Sons New York. p. 8-27.Google Scholar
  28. 28.
    Krumnacker, M., and Lange, W., Kristall und Technik, 1969. Vol. 4(2): p. 207-220.CrossRefGoogle Scholar
  29. 29.
    Martin, E.P., Witt, A. F., Carruthers, J. R., J. Electrochem. Soc., 1979. Vol. 126(2): p. 284-287.CrossRefGoogle Scholar
  30. 30.
    Bridgers, H.E., J. Appl. Phys., 1956. Vol. 27(7): p. 746-751.CrossRefGoogle Scholar
  31. 31.
    Yang, G., et al., Cryst. Res. Technol., 2014. Vol. 49(4): p. 269-275.CrossRefGoogle Scholar
  32. 32.
    Ghosh, K., Mani, V.N., Dhar, S., J. Cryst. Growth, 2009. Vol. 311(6): p. 1521-1528.CrossRefGoogle Scholar
  33. 33.
    Kim, K.-H., Lee, S-H., Lee, D.N., J. Mater. Eng. Perform., 1996. Vol. 5(5): p. 651-656.CrossRefGoogle Scholar
  34. 34.
    Voller, V.R., Int. J. Heat Mass Transfer, 2000. Vol. 43(11): p. 2047-2052.CrossRefGoogle Scholar
  35. 35.
    Du, Y., et al., Materials Science and Engineering: A, 2003. Vol. 363(1–2): p. 140-151.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Jose Alberto Muñiz-Lerma
    • 1
  • Manas Paliwal
    • 2
  • In-Ho Jung
    • 1
  • Mathieu Brochu
    • 1
  1. 1.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.Material Science and Engineering Department Indian Institute of TechnologyGandhinagarIndia

Personalised recommendations