Metallurgical and Materials Transactions B

, Volume 48, Issue 2, pp 1045–1054 | Cite as

Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography

  • Mihails ŠčepanskisEmail author
  • Mārtiņš Sarma
  • Peter Vontobel
  • Pavel Trtik
  • Knud Thomsen
  • Andris Jakovičs
  • Toms Beinerts


This paper presents qualitative and quantitative characterization of two-phase liquid metal flows agitated by the stirrer on rotating permanent magnets. The stirrer was designed to fulfill various eddy flows, which may have different rates of solid particle entrapment from the liquid surface and their homogenization. The flow was characterized by visualization of the tailored tracer particles by means of dynamic neutron radiography, an experimental method well suited for liquid metal flows due to low opacity of some metals for neutrons. The rather high temporal resolution of the image acquisition (32 Hz image acquisition rate) allows for the quantitative investigation of the flows up to 30 cm/s using neutron particle image velocimetry. In situ visualization of the two-phase liquid metal flow is also demonstrated.


Particle Image Velocimetry Liquid Metal Particle Tracking Velocimetry Neutron Radiography Neutron Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the European Social Fund (Project. No. 2013/0018/1DP/ and by the German Helmholtz Association in frame of the Helmholtz-Alliance LIMTECH. The experiment was performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villigen, Switzerland. The authors thank engineer Raimonds Nikoluškins (UL) for design and supervision during manufacturing of the setup, engineers Matīss Kalvāns (UL) and Thomas Steinberg (LUH) for support and operation of the setup during the experiment The authors are also thankful to Dr. Kalvis Kravalis (UL) for his effort in preparation of particles; Sten Anders and Dr. Tom Weier (both HZDR) for the invaluable help with particle tracking methods; Dr. Andris Bojarevičs and Dr. Ernests Platacis (both UL) for support and ideas in setup design and preparation.

Supplementary material

The video file contains neutron radiography visualization of different types of the MHD flows described in Figure 3, variation in magnet rotation speed and examples of PIV and PTV post-processing (AVI 75406 kb)


  1. 1.
    A. Umbrashko, E. Baake, B. Nacke, A. Jakovics: Met. Mater. Trans. B, 2006, vol. 37B, pp. 831-838.CrossRefGoogle Scholar
  2. 2.
    M. Ščepanskis, A. Jakovičs, E. Baake, B. Nacke: Magnetohydrodynamics, 2012, vol. 48, pp. 677-686.Google Scholar
  3. 3.
    M. Kirpo, A. Jakovičs, E. Baake, B. Nacke: Magnetohydrodynamics, 2007, vol. 43, pp. 161-162.Google Scholar
  4. 4.
    S. Pavlovs, A. Jakoviċs, E. Baake, B. Nacke, M. Kirpo: Magnetohydrodynamics, 2011, vol. 47, no. 4, pp. 399-412.Google Scholar
  5. 5.
    C. Trakas, P. Tabeling, J. P. Chabrerie: Journal de Mécanique Théorique et Appliquée, 1984, vol. 3, pp. 345-370.Google Scholar
  6. 6.
    D. J. Moore, J. C. R. Hunt: Progress in Astronautics & Aeronautics, 1983, vol. 84, pp. 359-373.Google Scholar
  7. 7.
    Y. Takeda: Nucl. Techn., 1987, vol. 79, pp. 120-124.Google Scholar
  8. 8.
    T. Wondrak, S. Eckert, G. Gerbeth, F. Stefani, K. Timmel, A. J. Peyton, N. Terzija, W. Yin: Steel Research Int., 2014, vol. 85, pp. 1266–1273.CrossRefGoogle Scholar
  9. 9.
    K. Timmel, N. Shevchenko, M. Röder, M. Anderhuber, P. Gardin, S. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2015, vol. 46B, no. 2, pp. 700-710.CrossRefGoogle Scholar
  10. 10.
    S. Taniguchi, J. K. Brimacombe: ISIJ Int., 1994, vol. 34, pp. 722-731.CrossRefGoogle Scholar
  11. 11.
    M. Ščepanskis, A. Jakovičs, E. Baake, B. Nacke: Int. J. Multiphase Flow, 2014, vol. 64, pp. 19-27.CrossRefGoogle Scholar
  12. 12.
    M. Iguchi, T. Chihara, N. Takanashi, Y. Ogawa, N. Tokumitsu, Z. Morita: ISIJ Int., 1995, vol. 35, pp. 1354-1361.CrossRefGoogle Scholar
  13. 13.
    V. F. Chevrier, A. W. Cramb: Met. Mater. Trans. B, 2000, vol. 31B, pp. 537-540.CrossRefGoogle Scholar
  14. 14.
    X. Dai, X. Yang, J. Campbell, J. Wood: Mater Sci. Eng. A, 2003, vol.354, pp. 315-325.CrossRefGoogle Scholar
  15. 15.
    W. Mirihanage, W. Xu, J. Tamayo-Ariztondo, D. Eskin, M. Garcia-Fernandez, P. Srirangam, P. Lee: Materials Letters, 2016, vol. 164, pp. 484-487.CrossRefGoogle Scholar
  16. 16.
    N. Takenaka, T. Fujii, A. Ono, K. Sonoda, S. Tazawa, T. Nakanii: Nondestructive Testing & Evaluation, 1994, vol. 11, no. 2-3, pp. 107-113.CrossRefGoogle Scholar
  17. 17.
    Y. Saito, K. Mishima, Y. Tibita, T. Suzuki, M. Matsubayashi: Appl. Radiation & Isotopes, 2004, vol. 61, pp. 683-691.CrossRefGoogle Scholar
  18. 18.
    Y. Saito, K. Mishima, Y. Tobita, T. Suzuki, M. Matsubayashi: Exp. Therm. Fluid Sci., 2005, vol. 29, no. 3, pp. 323-330.CrossRefGoogle Scholar
  19. 19.
    M. Ščepanskis, M. Sarma, R. Nikoluškins, K. Thomsen, A. Jakovičs, P. Vontobel, T. Beinerts, A. Bojarevičs, E. Platacis: Magnetohydrodynamics, 2015, vol. 51, pp. 257-265.Google Scholar
  20. 20.
    M. Sarma, M. Ščepanskis, A. Jakovičs, K. Thomsen, R. Nikoluškins, P. Vontobel, T. Beinerts, A. Bojarevičs, E. Platacis: Physics Procedia, 2015, vol. 69, pp. 457-463.CrossRefGoogle Scholar
  21. 21.
    E. H. Lehmann, P. Vontobel, L. Wiezel: Nondestr. Test. Eval., 2001, vol. 16, pp. 191-202.CrossRefGoogle Scholar
  22. 22.
    A. P. Kaestner, B. Műnch, P. Trtik, L. Butler: Opt. Eng., 2011, vol. 50, no. 12, p. 123201.CrossRefGoogle Scholar
  23. 23.
    A. Bojarevics, T. Beinerts: Magnetohydrodynamics, 2010, vol. 46, pp. 333-338.Google Scholar
  24. 24.
    T. Beinerts, I. Bucenieks, A. Bojarevičs, Y. Gelfgat: Magnetohydrodynamics, 2015, vol. 51, no. 4, pp. 757-770.Google Scholar
  25. 25.
    M. Ščepanskis, E. Yu. Koroteeva, V. Geža, A. Jakovičs: Magnetohydrodynamics, 2015, vol. 51, no. 1, pp. 37-44.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Mihails Ščepanskis
    • 1
    Email author
  • Mārtiņš Sarma
    • 2
  • Peter Vontobel
    • 3
  • Pavel Trtik
    • 3
  • Knud Thomsen
    • 3
  • Andris Jakovičs
    • 1
  • Toms Beinerts
    • 4
  1. 1.Laboratory for Mathematical Modelling of Environmental and Technological Processes, Department of PhysicsUniversity of LatviaRigaLatvia
  2. 2.Institute of Fluid DynamicsHelmholtz-Zentrum Dresden-RossendorfDresdenGermany
  3. 3.Paul Scherrer InstitutVilligenSwitzerland
  4. 4.Institute of PhysicsUniversity of LatviaSalaspilsLatvia

Personalised recommendations