Metallurgical and Materials Transactions B

, Volume 48, Issue 2, pp 772–778 | Cite as

Fabrication of Ni-Ti Alloy by Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering Technique

  • Pavel Salvetr
  • Tomáš František Kubatík
  • Damien Pignol
  • Pavel Novák
Article

Abstract

This work is focused on the possibilities of preparing Ni-Ti46 wt pct alloy by powder metallurgy methods. The self-propagating high-temperature synthesis (SHS) and combination of SHS reaction, milling, and spark plasma sintering consolidation (SPS) are explored. The aim of this work is the development of preparation method with the lowest amount of undesirable phases (mainly Ti2Ni phase). The SHS with high heating rate (approx. 200 and 300 K min−1) was applied. Because the SHS product is very porous, it was milled in vibratory disk milling and consolidated by SPS technique at temperatures of 1173 K, 1273 K, and 1373 K (900 °C, 1000 °C, and 1100 °C). The microstructures of samples prepared by SHS reaction and combination of SHS reaction, milling, and SPS consolidation are compared. The changes in microstructure with increasing temperature of SPS consolidation are observed. Mechanical properties are tested by hardness measurement. The way to reduce the amount of Ti2Ni phase in structure is leaching of powder in 35 pct hydrochloric acid before SPS consolidation.

Notes

Acknowledgment

Financial support from specific university research (MSMT No 20-SVV/2016) and Czech Science Foundation, Project No. 14-03044S.

References

  1. 1.
    [1] F. Wenbin, H. Lianxi, H. Wenxiong, W. Erde, L. Xiaoqing: Materials Science and Engineering: A, 2005, vol. 403, pp. 186-190.CrossRefGoogle Scholar
  2. 2.
    [2] M. Yamaguchi, H. Inui, K. Ito: Acta Materialia, 2000, vol. 48, pp. 307-322.CrossRefGoogle Scholar
  3. 3.
    [3] P. Novák, I. Marek, L. Mejzlíková, A. Michalcová, D. Vojtěch: Materials and technology, 2012, vol. 46, pp. 559-562.Google Scholar
  4. 4.
    [4] K. Otsuka, X. Ren: Progress in Materials Science, 2005, vol. 50, pp. 511-678.CrossRefGoogle Scholar
  5. 5.
    [5] J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson: Materials & Design, 2014, vol. 56, pp. 1078-1113.CrossRefGoogle Scholar
  6. 6.
    [6] L. Zhang, Y.Q. Zhang, Y.H. Jiang, R. Zhou: Journal of Alloys and Compounds, 2015, vol. 644, pp. 513-522.CrossRefGoogle Scholar
  7. 7.
    [7] Z. Zhang, J. Frenzel, K. Neuking, G. Eggeler: Acta Materialia, 2005, vol. 53, pp. 3971-3985.CrossRefGoogle Scholar
  8. 8.
    [8] M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri: Progress in Materials Science, 2012, vol. 57, pp. 911-946.CrossRefGoogle Scholar
  9. 9.
    T. Duerig, A. Pelton, Ch. Trepanier, Nitinol - PART I Mechanism and Behavior, SMST e-Elastic newsletter, ASM International (2011).Google Scholar
  10. 10.
    [10] N. Nayan, Govind, C.N. Saikrishna, K.V. Ramaiah, S.K. Bhaumik, K.S. Nair, M.C. Mittal: Materials Science and Engineering: A, 2007, vol. 465, pp. 44-48.CrossRefGoogle Scholar
  11. 11.
    [11] J. Frenzel, Z. Zhang, K. Neuking, G. Eggeler: Journal of Alloys and Compounds, 2004, vol. 385, pp. 214-223.CrossRefGoogle Scholar
  12. 12.
    [12] S.K. Sadrnezhad, S.B. Raz: Metallurgical and Materials Transactions B, 2005, vol. 36, pp. 395-403.CrossRefGoogle Scholar
  13. 13.
    [13] Y. Kabiri, A. Kermanpur, A. Foroozmehr: Vacuum, 2012, vol. 86, pp. 1073-1077.CrossRefGoogle Scholar
  14. 14.
    [14] M. Whitney, S.F. Corbin, R.B. Gorbet: Acta Materialia, 2008, vol. 56, pp. 559-570.CrossRefGoogle Scholar
  15. 15.
    [15] P. Novák, L. Mejzlíková, A. Michalcová, J. Čapek, P. Beran, D. Vojtěch: Intermetallics, 2013, vol. 42, pp. 85-91.CrossRefGoogle Scholar
  16. 16.
    [16] P. Novák, H. Moravec, P. Salvetr, F. Průša, J. Drahokoupil, J. Kopeček, M. Karlík, T. F. Kubatík: Materials Science and Technology, 2015, vol. 31, pp. 1886-1893.CrossRefGoogle Scholar
  17. 17.
    [17] P. Novák, T. Veselý, I. Marek, P. Dvořák, V. Vojtěch, P. Salvetr, M. Karlík, P. Haušild, J. Kopeček: Metallurgical and Materials Transactions B, 2016, vol. 47, pp. 932-938.CrossRefGoogle Scholar
  18. 18.
    [18] P. Novák, P. Pokorný, V. Vojtěch, A. Knaislová, A. Školáková, J. Čapek, M. Karlík, J. Kopeček: Materials Chemistry and Physics, 2015, vol. 155, pp. 113-121.CrossRefGoogle Scholar
  19. 19.
    [19] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi: Journal of Materials Science, 2006, vol. 41, pp. 763-777.CrossRefGoogle Scholar
  20. 20.
    [20] A. Bansiddhi, D.C. Dunand: Intermetallics, 2007, vol. 15, pp. 1612-1622.CrossRefGoogle Scholar
  21. 21.
    G. Chen, K.-D. Liss, P. Cao: Acta Materialia, 2014, vol. 67, pp. 32-44.CrossRefGoogle Scholar
  22. 22.
    [22] M. Nishida, C.M. Wayman, T. Honma: Metallurgical Transactions A, 1986, vol. 17, pp. 1505-1515.CrossRefGoogle Scholar
  23. 23.
    [23] S. Wisutmethangoon, N. Denmud, L. Sikong: Materials Science and Engineering: A, 2009, vol. 515, pp. 93-97.CrossRefGoogle Scholar
  24. 24.
    [24] M. V. Nevitt: Trans. TMS-AIME, 1960, vol. 218, pp. 327-331.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Pavel Salvetr
    • 1
  • Tomáš František Kubatík
    • 2
  • Damien Pignol
    • 1
  • Pavel Novák
    • 1
  1. 1.Department of Metals and Corrosion EngineeringUniversity of Chemistry and Technology, PraguePrague 6Czech Republic
  2. 2.Institute of Plasma Physics ASCRPrague 8Czech Republic

Personalised recommendations