Metallurgical and Materials Transactions B

, Volume 48, Issue 1, pp 346–356 | Cite as

Viscosity Measurement and Structure Analysis of Cr2O3-Bearing CaO-SiO2-MgO-Al2O3 Slags

  • Qiuhan Li
  • Jintao Gao
  • Yanling ZhangEmail author
  • Zhuoqing An
  • Zhancheng Guo


In this study, the effects of different Cr2O3 contents and optical basicity (denoted by Λ) on the viscosity and structure of the Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slag were investigated. The viscosities of Cr2O3-bearing CaO-SiO2-MgO-Al2O3 slags in the liquid phase below 1823 K (1550 °C) were measured by rotating-cylinder method, and the structures of the slags were examined via Raman spectroscopy. Three different parameters were used to characterize the structures of the slags. The results showed that the viscosity of the slags increased as the Cr2O3 content increased, but decreased as Λ increased. The Cr3+ ions acted as network formers and increased the degree of polymerization (DOP), and thus, the addition of Cr2O3 to the slag increased the number of bridging oxygen atoms in the silicate structural units. Generally, the viscosity increased by increasing DOP. In addition, there was a linear inverse relationship between the viscous activation energy (E μ ) and Λ. Furthermore, as the Cr2O3 content increased, the gradients of the plots of E μ vs Λ decreased. This indicates that for a slag with a high Cr2O3 content, trying to improve the fluidity of the slag by increasing Λ has a limited effect.


Raman Band Relative Fraction Mold Flux Slag Sample Molten Slag 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    X.H. Huang: Principles of Steel Metallurgy, 3rd ed., Metallurgical Industry Press, Beijing, 2013, pp. 211.Google Scholar
  2. 2.
    B.O. Mysen, D. Virgo, and F.A. Seifert: Rev. Geophys., 1982, vol. 20, pp. 353-83.CrossRefGoogle Scholar
  3. 3.
    S. Sukenaga, N. Saito, K. Kawakami and K. Nakashima: ISIJ Int., 2006, vol. 46, pp. 352-58.CrossRefGoogle Scholar
  4. 4.
    B.O. Mysen: Earth Sci. Rev., 1990, vol. 27, pp. 281-365.CrossRefGoogle Scholar
  5. 5.
    J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35, pp. 269-75.CrossRefGoogle Scholar
  6. 6.
    J.H. Park: ISIJ Int., 2012, vol. 52, pp. 1627-36.CrossRefGoogle Scholar
  7. 7.
    J.H. Park: J. Non-Cryst. Solids, 2012, vol. 358, pp. 3096-3102.CrossRefGoogle Scholar
  8. 8.
    Z.J. Wang, Q.F Shu, S. Sridhar, M. Zhang, M. Guo and Z.T. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 758-65.CrossRefGoogle Scholar
  9. 9.
    J.H. Park, H. Kim and D.J. Min: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 150–53.CrossRefGoogle Scholar
  10. 10.
    J.H. Park, D.J. Min and H.S. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 723–29.CrossRefGoogle Scholar
  11. 11.
    J.H. Park: Metall. Mater. Trans. B, 2013, vol. 44, pp. 938-47.CrossRefGoogle Scholar
  12. 12.
    K.C. Mills: ISIJ Int., 1993, vol. 33, pp. 148-55.CrossRefGoogle Scholar
  13. 13.
    R.C Behera, U.K Mohanty: ISIJ Int., 2001, vol. 41, pp. 827-33.CrossRefGoogle Scholar
  14. 14.
    T.S. Kim, J.H. Park: ISIJ Int., 2014, vol. 54, pp. 2031-38.CrossRefGoogle Scholar
  15. 15.
    L.J. Wang, Y.X. Wang, Q. Wang and K.C. Chou: Metall. Mater. Trans. B, 2016, vol. 47, pp. 10-15.CrossRefGoogle Scholar
  16. 16.
    J.L. Li, Q.F. Shu, and K.C. Chou: ISIJ Int., 2014, vol. 54, pp. 721-27.CrossRefGoogle Scholar
  17. 17.
    O.I. Ostrovski, Yu.I. Utochkin, and A.V. Pavlov: ISIJ Int., 1994, vol. 34, pp. 773-75.CrossRefGoogle Scholar
  18. 18.
    E. Minami, M. Amatatsu, and N. Sano: Tetsu-to-Hagané, 1987, vol. 73, S871.Google Scholar
  19. 19.
    C. Xu, W.L. Wang, L.J. Zhou, S.L. Xie and C. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 882-92.CrossRefGoogle Scholar
  20. 20.
    M. Chen, S. Raghunath and B.J. Zhao: Metall. Mater. Trans. B, 2013, vol. 44, pp. 506-15.CrossRefGoogle Scholar
  21. 21.
    G.C. Jiang, J.L. You: J. Chin. Ceram. Soc., 2004, vol. 31, pp. 998-1002.Google Scholar
  22. 22.
    J.F. Stebbins and Z. Xu: Nature, 1997, vol. 390, pp. 60–62.CrossRefGoogle Scholar
  23. 23.
    H. Maekawa, T. Meakawa, K. Kawamura, and T. Yokokawa: J. Non-Cryst. Solids,1991, vol. 127, pp. 53–64.CrossRefGoogle Scholar
  24. 24.
    B.O. Mysen: Am. Miner., 1990, vol. 75, pp. 120–34.Google Scholar
  25. 25.
    D. Virgo, B.O. Mysen, and I. Kushiro: Science, 1980, vol. 208, pp. 1371-73.CrossRefGoogle Scholar
  26. 26.
    B.O. Mysen, D. Virgo, and C.M. Scarfe: Am. Miner., 1980, vol. 65, pp. 690–710.Google Scholar
  27. 27.
    J.D. Frantza, B.O. Mysen: Chem. Geo., 1995, vol. 121, pp. 155-76.CrossRefGoogle Scholar
  28. 28.
    P. McMillan: Am. Miner., 1984, vol. 69, pp. 622-44.Google Scholar
  29. 29.
    I. Sohn, D.J. Min: Steel Res. Int., 2012, vol. 83, pp. 611-30.CrossRefGoogle Scholar
  30. 30.
    P.F. McMillan, B.T. Poe, and P.H. Gillet: Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 3653-64.CrossRefGoogle Scholar
  31. 31.
    P. McMillan: Am. Miner., 1984, vol. 69, pp. 645–59.Google Scholar
  32. 32.
    D.W. Matson, S.K. Sharma, and J.A. Philpotts: J. Non-Cryst. Solids, 1983, vol. 58, pp. 323–52.CrossRefGoogle Scholar
  33. 33.
    K. Fukumi, J. Hayakawa, and T. Komiyama: J. Non-Cryst. Solids, 1990, vol. 119, pp. 297–302.CrossRefGoogle Scholar
  34. 34.
    B.O. Mysen and J.D. Frantz: Am. Miner., 1993, vol. 78, pp. 699–709.Google Scholar
  35. 35.
    J.L. You, G.C. Jiang, and K.D. Xu: J. Non-Cryst. Solids, 2001, vol. 282, pp. 125–31.CrossRefGoogle Scholar
  36. 36.
    B.O. Mysen and J.D. Frantz: Contrib. Miner. Petrol., 1994, vol. 117, pp. 1–14.CrossRefGoogle Scholar
  37. 37.
    B.O. Mysen, L.W. Finger, D. Virgo, and F.A. Seifert: Am. Miner., 1982, vol. 67, pp. 686–95.Google Scholar
  38. 38.
    T.J. Dines, S. Inglis: Phys. Chem. Chem. Phys., 2003, vol. 5, pp. 1320-28.CrossRefGoogle Scholar
  39. 39.
    J.J. Yang, H. Cheng, and W.N. Martens: J. Raman Spectrosc., 2011, vol. 42, pp. 1069-74.CrossRefGoogle Scholar
  40. 40.
    B. M. Weckhuysen and I. F. Wachs: J. Chem. Soc, Fara. Trans., 1996, vol. 92, pp. 1969-73.CrossRefGoogle Scholar
  41. 41.
    R.D. Shannon: Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, pp. 751-67.CrossRefGoogle Scholar
  42. 42.
    Y.W. Mao: Metallurgical Melt, 1st ed., Metallurgical Industry Press, Beijing, 1994, pp. 108-09.Google Scholar
  43. 43.
    W.J. Huang, Y.H. Zhao, S. Yu, L.X. Zhang, Z.C. Ye, N. Wang and M. Chen: ISIJ Int., 2016, vol. 56, pp. 594-601.CrossRefGoogle Scholar
  44. 44.
    L. Forsbacka: Ph. D. Thesis, Helsinki University of Technology, 2007, p. 47.Google Scholar
  45. 45.
    Z. Kalicka, E. Kawecka-Cebula, and K. Pytel: Arch. Metall. Mater., 2009, vol. 54, issue 1, pp. 179-87.Google Scholar
  46. 46.
    J.A. Duffy: Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 3961-70.CrossRefGoogle Scholar
  47. 47.
    X.M. Yang: Chem. Metall. Eng., 1994, vol. 15, pp. 87-94.Google Scholar
  48. 48.
    F. Fincham, F.D. Richardson: Proc. Roy. Soc. London, 1952, vol. 223, pp. 40-62.CrossRefGoogle Scholar
  49. 49.
    S. Arrhenius: Phys. Chem., 1887, vol. 1, pp. 285-98.Google Scholar
  50. 50.
    K. Zheng, Z.T. Zhang, L.L. Liu and X.D. Wang: Metall. Mater. Trans. B, 2014. Vol. 45, pp. 1389-97.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Qiuhan Li
    • 1
  • Jintao Gao
    • 1
  • Yanling Zhang
    • 1
    Email author
  • Zhuoqing An
    • 1
  • Zhancheng Guo
    • 1
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science & Technology BeijingBeijingChina

Personalised recommendations