Metallurgical and Materials Transactions B

, Volume 48, Issue 1, pp 317–327 | Cite as

Thermodynamics of Palladium (Pd) and Tantalum (Ta) Relevant to Secondary Copper Smelting

  • M. A. H. Shuva
  • M. A. RhamdhaniEmail author
  • G. A. Brooks
  • S. H. Masood
  • M. A. Reuter


The slag-to-metal distribution ratios of palladium (Pd), \( L_{\text{Pd}}^{s/m} \), in the range of oxygen partial pressure (pO2) from 10−10 to 10−7 atm at 1473 K to 1623 K (1200 °C to 1350 °C); distribution ratios of tantalum (Ta), \( L_{\text{Ta}}^{s/m} \), in the range of pO2 from 10−16 to 10−12 atm at 1673 K and 1873 K (1400 °C and 1600 °C), have been determined in this study. The \( L_{\text{Pd}}^{s/m} \) in FeO x -CaO-SiO2-MgO and copper at 1573 K (1300 °C) and pO2 = 10−8 atm is dependant strongly on basicity of slag, i.e. (CaO + MgO)/SiO2 or optical basicity. The current results suggest that Pd presents in the FeO x -CaO-SiO2-MgO slag predominantly as Pd2+. The activity coefficient of PdO in the slag at 1573 K (1300 °C) and pO2 = 10−8 atm was calculated to be in the range of 3.89 × 10−3 to 2.63 × 10−2. The \( L_{\text{Pd}}^{s/m} \) was also found to increase with increasing of pO2 and with decreasing of temperature. It was observed that Ta mostly partition to slag phase and very small amount of Ta was found in liquid copper at the high temperature and reduced condition studied. It can be suggested that to promote recovery of palladium from Pd-containing e-waste, a slag with lower silica content and basic flux based, high temperature with reducing atmosphere, is highly desired particularly in secondary copper smelting.


Activity Coefficient Slag Composition Copper Smelting Liquid Copper Optical Basicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge the Swinburne University Postgraduate Research Award (SUPRA) support and the Wealth from Waste Research Cluster, a collaborative program between the Australian CSIRO (Commonwealth Scientific Industrial Research Organisation); University of Technology, Sydney; The University of Queensland, Swinburne University of Technology, Monash University and Yale University, USA.


  1. 1.
    C.C. Allen: The Platinum Metals, Mineral Resources Division, Ottawa, 1960, Mineral Report No. 3, p. 7Google Scholar
  2. 2.
    R.E. Kirk and D.F. Othmer: Encyclopaedia of Chemical Technology, 3rd ed., vol. 18, Wiley Publications, New York, 1973, p. 228Google Scholar
  3. 3.
    R.W. Hesse: Jewellery making through history: An Encyclopaedia, Greenwood Publishing Group, Connecticut, 2007, pp. 146Google Scholar
  4. 4.
    R. Ruhela, A.K Sing, B.S. Tomar, and R.C Hubi: RSC Adv., 2014, vol. 4 (44), pp. 23433–50Google Scholar
  5. 5.
    A. Omoto, K, Moriya, and H. Karasawa: Nucl. Eng. Des., 2000, vol. 197(3), pp. 281–99Google Scholar
  6. 6.
    P.J. Loferski: USGS Mineral Commodity Summaries—Platinum Group Metals, Mineral Yearbook, United States Geology Survey, 2015.Google Scholar
  7. 7.
    E. Worrell and M. Reuter: Handbook of Recycling, 1st ed., Elsevier, Oxford, UK, 2014, pp. 85–94Google Scholar
  8. 8.
    E. Worrell and M. Reuter: Handbook of Recycling, 1st ed., Elsevier, Oxford, UK, 2014, pp. 85–94Google Scholar
  9. 9.
    A. Anindya, D.R. Swinbourne, M.A. Reuter, and R.W. Matusewicz: Miner. Process. Extr. Metall., 2013, 122 (3), pp. 165–73.Google Scholar
  10. 10.
    A. Anindya, D.R. Swinbourne, M.A. Reuter, and R.W. Matusewicz: Miner. Proces. Extr. Metall., 2013, vol. 123 (1), pp. 43–52.Google Scholar
  11. 11.
    C. Hageluken: IEEE International Symposium on Electronics and the Environment, Scottsdale, 2006, pp. 218–23.Google Scholar
  12. 12.
    C. Hageluken: World of Metallurgy – ERZMETALL, 2006, vol. 59(3), pp. 152–61.Google Scholar
  13. 13.
    A. Heukelem, M. Reuter, and J. Huisman: Electronics, 2004, pp. 657–61.Google Scholar
  14. 14.
    J. Cui and L. Zhang: J. Hazard. Mater., 2008, vol.158, pp. 228-56.CrossRefGoogle Scholar
  15. 15.
    J. Cui and E. Forssberg: J. Hazard. Mater., 2003, vol. 99 (3), pp. 243-63.CrossRefGoogle Scholar
  16. 16.
    A. Khaliq, M.A. Rhamdhani, G.A. Brooks, and S. Masood: Resources, 3(1), 2014, pp. 152-179.CrossRefGoogle Scholar
  17. 17.
    H. Veldbuizen and B. Sippel: Ind. Environ., 1994, vol. 17(3), pp. 7–14.Google Scholar
  18. 18.
    L. Theo: IEEE International Symposium on Electronics & the Environment, Oak Brok, IL, 1998, p.42-47.Google Scholar
  19. 19.
    M.A.H. Shuva, M.A. Rhamdhani, G.A. Brooks, S. Masood and M.A. Reuter: J.Clean. Prod., 2016, 131, 795-809CrossRefGoogle Scholar
  20. 20.
    M.A.H. Shuva, M.A. Rhamdhani, G.A. Brooks, S. Masood and M.A. Reuter: Metall. Mater. Trans. B, 2016. doi:  10.1007/s11663-016-0759-x Google Scholar
  21. 21.
    Y.S. Han, D.R. Swinbourne and J. H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2449-57CrossRefGoogle Scholar
  22. 22.
    K. Yamaguchi: Proc. of Copper 2010, Hamburg, Germany, 2010, vol. 3 pp. 1287–95Google Scholar
  23. 23.
    D.R. Swinbourne, G.G. Barbanate and A.Sheeran: Metall. Mater. Trans. B, 1998, vol. 9B, pp. 555-62.CrossRefGoogle Scholar
  24. 24.
    T.S. Kho, D.R. Swinbourne and T. Lehner: Metall. Mater. Trans. B,, 2006, vol. 37B, pp. 209-14.CrossRefGoogle Scholar
  25. 25.
    Y.S. Han and J.H. Park: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 235-42CrossRefGoogle Scholar
  26. 26.
    M.D. Johnston, S. Jahanshahi, and F.J. Lincoln: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 433-42.CrossRefGoogle Scholar
  27. 27.
    H.M. Henao, K.Yamaguchi and S.Ueda: TMS Fall Extraction & Processing: Sohn International Symposium, San Diego, California, USA,2006, p. 723-29.Google Scholar
  28. 28.
    K. Avarmaa, H. O’Brien, H. Johto, and P. Taskinen: J. Sustain. Metall. 2015, vol. 1 (3) pp. 1–13.Google Scholar
  29. 29.
    K. Yamaguchi: Proceeding of Copper 2013, Santiago, Chile, 2013, pp. 775–84.Google Scholar
  30. 30.
    W. Nishijima and K. Yamaguchi: J. Jpn. Inst. Met. Mater., 2014, vol. 78(7), pp. 267–73Google Scholar
  31. 31.
    A. Yazawa and Y. Takeda: Trans. Jpn Inst. Metal, 1982, vol. 23(6), pp. 328-33.CrossRefGoogle Scholar
  32. 32.
    A. Yazawa, Y. Takeda, and S. Nakazawa: Proc. Copper 99–Cobre 99, Phoenix, AZ, The Metallurgical Society of CIM, 1999, pp. 587–97.Google Scholar
  33. 33.
    Y. Takeda, S. Ishiwata, and A. Yazawa: Trans. Jpn Inst. Metal, 1983, vol. 24(7), pp. 518-28.CrossRefGoogle Scholar
  34. 34.
    R.P.Rastogi and R.R.Misra: Introduction to Chemical Thermodynamics, 6th Ed., Vikas Publishing House, India,2009Google Scholar
  35. 35.
    FactSageTM 7.0: Accessed March 2016.
  36. 36.
    C.W Bale, E. Besisle, P. Chartrand, S.A. Decterov, G.R. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, C. Robelin and S. Peterson: CALPHAD, 2009 vol. 33, pp. 295-311.CrossRefGoogle Scholar
  37. 37.
    G.K. Sigworth and J.F. Elliott: Can. Metall. Q., 1974, vol. 13(3), pp. 455-61.CrossRefGoogle Scholar
  38. 38.
    R. Hultgren: Selected values of the thermodynamics Properties of Binary Alloys, American Society for Metals, Metals Park, 1973, pp. 777-786Google Scholar
  39. 39.
    A. Yazawa and T. Azakami: Can. Metall. Q., 1969, vol. 8(3), pp. 257-61.CrossRefGoogle Scholar
  40. 40.
    M.Li, Z. Du, C. Guo and C.Li: CALPHAD, 2008, 32(2), p.439-446.CrossRefGoogle Scholar
  41. 41.
    J.A. Duffy and M.D. Ingram: J. Non-Crystal Solids, 1976, vol. 21, pp. 373-410.CrossRefGoogle Scholar
  42. 42.
    J.A. Duffy and M.D. Ingram: Phys. Chem. Glasses, 1975, vol. 16, pp. 119–23.Google Scholar
  43. 43.
    J.A. Duffy, M.D. Ingram, and I.D. Sommerville: J. Chem. Soc. Faraday Trans. I, 1978, vol. 74, pp. 1410-19.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • M. A. H. Shuva
    • 1
    • 3
  • M. A. Rhamdhani
    • 1
    • 3
    Email author
  • G. A. Brooks
    • 1
    • 3
  • S. H. Masood
    • 1
    • 3
  • M. A. Reuter
    • 2
  1. 1.Department of Mechanical and Product Design Engineering, Swinburne University of TechnologyMelbourneAustralia
  2. 2.Helmholtz Institute Freiberg for Resource TechnologyFreibergGermany
  3. 3.Wealth from Waste Research ClusterMelbourneAustralia

Personalised recommendations