Metallurgical and Materials Transactions B

, Volume 48, Issue 1, pp 406–419 | Cite as

Optimization of Melt Treatment for Austenitic Steel Grain Refinement

  • Simon N. Lekakh
  • Jun Ge
  • Von Richards
  • Ron O’Malley
  • Jessica R. TerBush


Refinement of the as-cast grain structure of austenitic steels requires the presence of active solid nuclei during solidification. These nuclei can be formed in situ in the liquid alloy by promoting reactions between transition metals (Ti, Zr, Nb, and Hf) and metalloid elements (C, S, O, and N) dissolved in the melt. Using thermodynamic simulations, experiments were designed to evaluate the effectiveness of a predicted sequence of reactions targeted to form precipitates that could act as active nuclei for grain refinement in austenitic steel castings. Melt additions performed to promote the sequential precipitation of titanium nitride (TiN) onto previously formed spinel (Al2MgO4) inclusions in the melt resulted in a significant refinement of the as-cast grain structure in heavy section Cr-Ni-Mo stainless steel castings. A refined as-cast structure consisting of an inner fine-equiaxed grain structure and outer columnar dendrite zone structure of limited length was achieved in experimental castings. The sequential of precipitation of TiN onto Al2MgO4 was confirmed using automated SEM/EDX and TEM analyses.


Heterogeneous Nucleation Duplex Stainless Steel Ferritic Stainless Steel Near Neighboring Distance Thermodynamic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study is supported by Kent Peaslee Steel Manufacturing Research Center, and the authors gradually thank to the members of industrial advisers committee of this project for material supply, suggestions in mold design, and regular results discussion.


  1. 1.
    Y. Shan, X. Luo, X. Hu, and S. Liu: Mater. Sci. Technol., 2011, vol. 27, no. 4, pp. 352–58.CrossRefGoogle Scholar
  2. 2.
    J.K. Brimacombe: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1899–912.CrossRefGoogle Scholar
  3. 3.
    X. Wu, Y. Yang, J. Zhang, G. Jia, and Z. Hu: J. Mater. Eng. Perform., 1999, vol. 8, no. 5, pp. 525–30.CrossRefGoogle Scholar
  4. 4.
    J.Z. Lu: Acta Mater., 2010, vol. 58, pp. 5354–62.CrossRefGoogle Scholar
  5. 5.
    B. Abbasi-Khazaei: J. Mater. Sci. Technol., 2012, vol. 28, no. 10, pp. 946–50.CrossRefGoogle Scholar
  6. 6.
    Ø. Grong: ISIJ Int., 2006, vol. 46, no. 6, pp. 824–31.CrossRefGoogle Scholar
  7. 7.
    W.Kurz and D. J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Adermannsdorf, 1986, p. 27.Google Scholar
  8. 8.
    A. L. Greer: Philos. Trans. R. Soc. Lond. A, 2003, vol. 361, pp. 479–95.CrossRefGoogle Scholar
  9. 9.
    M. Qian: Acta Mater., 2007, vol. 55, pp. 943–53.CrossRefGoogle Scholar
  10. 10.
    E. S. Dahle: A Master Thesis at Norwegian University of Science and Technology, 2011.Google Scholar
  11. 11.
    R. Tuttle, K. Song: IJMC, 2015, vol. 9, pp. 23–25.Google Scholar
  12. 12.
    R. Tuttle: J. Mater. Eng. Perform, 2013, vol. 22, pp. 145–50.CrossRefGoogle Scholar
  13. 13.
    R. Tuttle: IJMC, 2012, Spring, pp. 51–63.Google Scholar
  14. 14.
    R. Tuttle: IJMC, 2016, vol. 10, pp. 21–31.Google Scholar
  15. 15.
    M. Kiviö: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 1194–204.CrossRefGoogle Scholar
  16. 16.
    M. Kiviö: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 233–40.CrossRefGoogle Scholar
  17. 17.
    M. Zielińska, K. Kubiak, J. Sieniawski: J. Achiev. Mater. Manuf. Eng., 2009, vol. 35, no. 1, pp. 55–62.Google Scholar
  18. 18.
    D.W. Kim: J. Nucl. Mater., 2012, vol. 420, pp. 473–78.CrossRefGoogle Scholar
  19. 19.
    C. Wang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1616–20.CrossRefGoogle Scholar
  20. 20.
    J.S. Park, J.H. Park: Steel Res. Int., 2014, 85(8), pp. 1303–09.Google Scholar
  21. 21.
    H. Suito: ISIJ Int., 2001, vol. 41, no. 7, pp. 748–56.CrossRefGoogle Scholar
  22. 22.
    K. Isobe: ISIJ Int., 2010, vol. 50, no. 12, pp. 1972–80.CrossRefGoogle Scholar
  23. 23.
    K. Kimura: ISIJ Int., 2013, vol. 53, no. 12, pp. 2167–75.CrossRefGoogle Scholar
  24. 24.
    J.S. Park, C. Lee, and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 34B, pp. 1550–64.CrossRefGoogle Scholar
  25. 25.
    B.L. Bramfitt: Metall. Trans., 1970, vol. 1, no. 7, pp. 1987–95.CrossRefGoogle Scholar
  26. 26.
    S.N. Lekakh, N.I. Medvedeva: Comput. Mater. Sci., 2015, vol. 106, pp. 149–54.CrossRefGoogle Scholar
  27. 27.
    Factsage thermodynamic software, GTT-Technologies, Aachen.
  28. 28.
    N. Philips: A Master Thesis at Iowa State University, 2006.Google Scholar
  29. 29.
    Casting simulation software Magma®, Aachen.
  30. 30.
    M. Harris, O. Adaba, S. Lekakh, R. O’Malley, V. Richards: AISTech Proceedings, 2015, pp. 3315–25.Google Scholar
  31. 31.
    G.N. Heintze: Welding Research Supplement, March 1986, pp. 71–82.Google Scholar
  32. 32.
    A. Ostrowski: Scand. J. Metall., 1979, vol. 8, pp. 153–60.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Simon N. Lekakh
    • 1
  • Jun Ge
    • 2
  • Von Richards
    • 1
  • Ron O’Malley
    • 1
  • Jessica R. TerBush
    • 1
  1. 1.Missouri University of Science and TechnologyRollaUSA
  2. 2.University of Alabama at BirminghamBirminghamUSA

Personalised recommendations