Metallurgical and Materials Transactions B

, Volume 47, Issue 6, pp 3384–3393 | Cite as

Comparison of CFD Simulations with Experimental Measurements of Nozzle Clogging in Continuous Casting of Steels

  • Mahdi Mohammadi-Ghaleni
  • Mohsen Asle Zaeem
  • Jeffrey D. Smith
  • Ronald O’Malley
Article

Abstract

Measurements of clog deposit thickness on the interior surfaces of a commercial continuous casting nozzle are compared with computational fluid dynamics (CFD) predictions of melt flow patterns and particle–wall interactions to identify the mechanisms of nozzle clogging. A submerged entry nozzle received from industry was encased in epoxy and carefully sectioned to allow measurement of the deposit thickness on the internal surfaces of the nozzle. CFD simulations of melt flow patterns and particle behavior inside the nozzle were performed by combining the Eulerian-Lagrangian approach and detached eddy simulation turbulent model, matching the geometry and operating conditions of the industrial test. The CFD results indicated that convergent areas of the interior cross section of the nozzle increased the velocity and turbulence of the flowing steel inside the nozzle and decreased the clog deposit thickness locally in these areas. CFD simulations also predicted a higher rate of attachment of particles in the divergent area between two convergent sections of the nozzle, which matched the observations made in the industrial nozzle measurements.

Notes

Acknowledgment

The authors would like to acknowledge the Kent D. Peaslee Steel Manufacturing Research Center (PSMRC) at Missouri University of Science and Technology (Missouri S&T) for funding support of this research.

References

  1. 1.
    SK Choudhary and AJ Khan: Steel Times Int., 2000, vol. 24, p. 21.Google Scholar
  2. 2.
    KG Rackers and BG Thomas: Urbana, 1995, vol. 51, p. 61801.Google Scholar
  3. 3.
    H. Schuster S. Rödl, S. Ekerot, G. Xia,N. Veneri, F. Ferro, S. Baragiola, P. Rossi, S. Fera, V. Colla, G. Bioli, M. Krings, L.-F. Sancho, A. Diaz, M. Andersson and N. Kojola, Research Fund for Coal and Steel Unit 2008.Google Scholar
  4. 4.
    A Theodorakakos and G Bergeles: Metall. Mater. Trans. B, 1998, vol. 29, pp. 1321-1327.CrossRefGoogle Scholar
  5. 5.
    GA Panaras, A Theodorakakos, and G Berggeles: Metall. Mater. Trans. B, 1998, vol. 29, pp. 1117-1126.CrossRefGoogle Scholar
  6. 6.
    J Anagnostopoulos and G Bergeles: Metall. Mater. Trans. B, 1999, vol. 30, pp. 1095-1105.CrossRefGoogle Scholar
  7. 7.
    Noriko Kubo, Toshio Ishii, Jun Kubota, and Norichika Aramaki: ISIJ Int., 2002, vol. 42, pp. 1251-1258.CrossRefGoogle Scholar
  8. 8.
    Yeong-Ho Ho, Chi-Hung Chen, and Weng-Sing Hwang: ISIJ Int., 1994, vol. 34, pp. 255-264.CrossRefGoogle Scholar
  9. 9.
    M. Mohammadi-Ghaleni, M. Zivdar, and M. Reza Nemati: in 6th International Conference on Advanced Computational and Experimenting, 2012, Istanbul, Turkey.Google Scholar
  10. 10.
    Hua Bai and Brian G Thomas: Metall. Mater. Trans. B, 2001, vol. 32, pp. 707-722.CrossRefGoogle Scholar
  11. 11.
    Lifeng Zhang, Yufeng Wang, and Xiangjun Zuo: Metall. Mater. Trans. B, 2008, vol. 39, pp. 534-550.CrossRefGoogle Scholar
  12. 12.
    C Pfeiler, M Wu, and A Ludwig: Mater. Sci. Eng. A, 2005, vol. 413, pp. 115-120.CrossRefGoogle Scholar
  13. 13.
    Quan Yuan, Brian G Thomas, and SP Vanka: Metall. Mater. Trans. B, 2004, vol. 35, pp. 685-702.CrossRefGoogle Scholar
  14. 14.
    Quan Yuan, Brian G Thomas, and SP Vanka: Metall. Mater. Trans. B, 2004, vol. 35, pp. 703-714.CrossRefGoogle Scholar
  15. 15.
    B.G. Thomas and H. Bai: in Steelmaking Conference Proceedings, 2001.Google Scholar
  16. 16.
    R Sambasivam: Ironmak. Steelmak., 2006, vol. 33, pp. 439-453.CrossRefGoogle Scholar
  17. 17.
    Lifeng Zhang, Brian G Thomas (2006) J. Univ. Sci. Technol. Beijing Min. Metall. Mater., 13: 293-300.Google Scholar
  18. 18.
    Fangming Yuan, Xinghua Wang, Jiongming Zhang, and Li Zhang: J. Univ. Sci. Technol. Beijing Miner. Metall. Mater., 2008, vol. 15, pp. 227-235.Google Scholar
  19. 19.
    Hong Lei, Dian-Qiao Geng, and Ji-Cheng He: ISIJ Int., 2009, vol. 49, pp. 1575-1582.CrossRefGoogle Scholar
  20. 20.
    Mujun Long, Xiangjun Zuo, Lifeng Zhang, and Dengfu Chen: ISIJ Int., 2010, vol. 50, pp. 712-720.CrossRefGoogle Scholar
  21. 21.
    Mahdi Mohammadi-Ghaleni, Mohsen Asle Zaeem, Jeffrey D Smith, and Ronald O’Malley: Metall. Mater. Trans. B, 2016. doi: 10.1007/s11663-016-0729-3 Google Scholar
  22. 22.
    ANSYS CFX 14.0 User Manual. Ansys Inc., CanonsburgGoogle Scholar
  23. 23.
    Peiyuan Ni, Lage Tord Ingemar Jonsson, Mikael Ersson, and Pär Göran Jönsson: Int. J. Multiph. Flow, 2014, vol. 62, pp. 152-160.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Mahdi Mohammadi-Ghaleni
    • 1
  • Mohsen Asle Zaeem
    • 1
  • Jeffrey D. Smith
    • 1
  • Ronald O’Malley
    • 1
  1. 1.Department of Materials Science and EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations