Advertisement

Metallurgical and Materials Transactions B

, Volume 47, Issue 5, pp 2971–2978 | Cite as

Observation of Nanometric Silicon Oxide Bifilms in a Water-Atomized Hypereutectic Cast Iron Powder

  • Mathieu BoisvertEmail author
  • Denis Christopherson
  • Gilles L’EspéranceEmail author
Article
  • 159 Downloads

Abstract

This study investigated the reasons for the irregular structure of primary graphite nodules that were formed in a hypereutectic cast iron powder during water atomization. The graphite nodules contain a significant amount of micron-sized pores and multiple nanometric voids that formed from silicon oxide bifilms. The bifilms theory is often used to explain the mechanisms responsible for the presence of pores in castings. However, even if many results presented in the literature tend to corroborate the existence of bifilms, to this date, only indirect evidences of their existence were presented. The observations presented in this paper are the first to show the double-sided nature of these defects. These observations support the bifilms theory and give an explanation for the presence of porosities in castings. The bifilms were used as substrate for graphite growth during solidification. The irregular structure of the graphite nodules is a consequence of the rather random structure of the bifilms that were introduced in the melt as a result of turbulences on the surface of the melt during pouring. The confirmation of the existence of bifilms can contribute to the understanding of the mechanical properties of various metallic parts.

Keywords

Bifilms Porosities cast iron water atomization graphite morphology transmission electron microscopy 

Notes

Acknowledgments

The authors thank their collaborators for their technical assistance for the work presented in this paper: the members of the laboratory LAMPOUL directed by Carl Blais, professor at Université Laval, for the powder atomizations, and Jean-Phillipe Masse from the Center for Characterization and Microscopy of Materials, the (CM)2, for his help with TEM observations.

Funding

The authors would like to acknowledge the financial support of Federal-Mogul Powertrain and AUTO21, a multi-disciplinary, auto-related research and development (R&D) initiative established by the Canadian Networks of Centres of Excellence (NCE) program. AUTO21 is funded by a blend of federal, provincial, and industry support.

Conflict of interest

The authors confirm that there is no conflict of interest.

References

  1. 1.
    J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design ; John Campbell (Elsevier, Oxford, 2011).Google Scholar
  2. 2.
    J. F. Major, AFS Trans. 105, 901 (1998).Google Scholar
  3. 3.
    G. Lasko, M. Apel, A. Carre, U. Weber, and S. Schmauder, Adv. Eng. Mater. 14, 236 (2012).CrossRefGoogle Scholar
  4. 4.
    T. J. Marrow, J.-Y. Buffiere, P. J. Withers, G. Johnson, and D. Engelberg, Int. J. Fatigue 26, 717 (2004).CrossRefGoogle Scholar
  5. 5.
    Z. Yang, J. Kang, and D. S. Wilkinson, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 46, 1576 (2015).CrossRefGoogle Scholar
  6. 6.
    P. D. Lee, A. Chirazi, and D. See, J. Light Met. 1, 15 (2001).CrossRefGoogle Scholar
  7. 7.
    P. N. Anyalebechi, J. Mater. Sci. 48, 5342 (2013).CrossRefGoogle Scholar
  8. 8.
    L. Yao, S. Cockcroft, C. Reilly, and J. Zhu, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 1004 (2012).CrossRefGoogle Scholar
  9. 9.
    L. Liu, A. M. Samuel, and F. H. Samuel, J. Mater. Sci. 38, 1255 (2003).CrossRefGoogle Scholar
  10. 10.
    J. Zeng, D. Li, M. Kang, H. He, and Z. Hu, J. Nanosci. Nanotechnol. 13, 6948 (2013).CrossRefGoogle Scholar
  11. 11.
    R. C. Atwood, S. Sridhar, and P. D. Lee, Scr. Mater. 41, 1255 (1999).CrossRefGoogle Scholar
  12. 12.
    J. Campbell, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 42, 1091 (2011).Google Scholar
  13. 13.
    J. Campbell, Mater. Sci. Technol. 22, 127 (2006).CrossRefGoogle Scholar
  14. 14.
    J. Campbell, J. Mater. Sci. 51, 96 (2016).CrossRefGoogle Scholar
  15. 15.
    D. Dispinar and J. Campbell, Int. J. Cast Met. Res. 17, 280 (2004).CrossRefGoogle Scholar
  16. 16.
    D. Dispinar and J. Campbell, Int. J. Cast Met. Res. 17, 287 (2004).CrossRefGoogle Scholar
  17. 17.
    D. Dispinar and J. Campbell, Int. J. Cast Met. Res. 19, 5 (2006).CrossRefGoogle Scholar
  18. 18.
    W. D. Griffiths and R. Raiszadeh, J. Mater. Sci. 44, 3402 (2009).CrossRefGoogle Scholar
  19. 19.
    D. Dispinar, S. Akhtar, A. Nordmark, M. Di Sabatino, and L. Arnberg, Mater. Sci. Eng. A (Structural Mater. Prop. Microstruct. Process., 2010, vol. 527, pp. 3719–25.Google Scholar
  20. 20.
    D. Dispinar and J. Campbell, Mater. Sci. Eng. A 528, 3860 (2011).CrossRefGoogle Scholar
  21. 21.
    G. Eisaabadi Bozchaloei, N. Varahram, P. Davami, and S. K. Kim, Mater. Sci. Eng. A 548, 99 (2012).CrossRefGoogle Scholar
  22. 22.
    A. M. Samuel, F. H. Samuel, and H. W. Doty, J. Mater. Sci. 31, 5529 (1996).CrossRefGoogle Scholar
  23. 23.
    D. N. Miller, L. Lu, and A. K. Dahle, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 37, 873 (2006).CrossRefGoogle Scholar
  24. 24.
    X. Cao and J. Campbell, Mater. Trans. 47, 1303 (2006).CrossRefGoogle Scholar
  25. 25.
    K. Liu, X. Cao, and X.-G. Chen, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 46, 1566 (2015).CrossRefGoogle Scholar
  26. 26.
    J. Campbell and M. Tiryakioglu, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 43, 902 (2012).CrossRefGoogle Scholar
  27. 27.
    J. Campbell, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 40, 786 (2009).CrossRefGoogle Scholar
  28. 28.
    B. Puhakka, in (Shape Cast., John Wiley & Sons, Inc., 2011), pp. 79–85.Google Scholar
  29. 29.
    B. Puhakka, in (Shape Cast., John Wiley & Sons, Inc., 2011), pp. 241–248.Google Scholar
  30. 30.
    R. M. German, Powder Metallurgy and Particulate Materials Processing (Metal Powder Industries Federation, Princeton, 2005).Google Scholar
  31. 31.
    D. B. Williams and C. B. Carter, Transmission Electron Microscopy. Imaging. III (Springer, New York, 1996).CrossRefGoogle Scholar
  32. 32.
    C. W. Bale, E. Belisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melancon, A. D. Pelton, C. Robelin, and S. Petersen, CALPHAD Comput. Coupling Phase Diagrams Thermochem. 33, 295 (2009).CrossRefGoogle Scholar
  33. 33.
    A. Sommerfeld and B. Tonn, in (American Foundry Society 1695 North Penny Lane Schaumburg IL 60173-4555 United States, 2009), pp. 39–47.Google Scholar
  34. 34.
    I. Riposan, M. Chisamera, S. Stan, C. Ecob, and D. Wilkinson, J. Mater. Eng. Perform. 18, 83 (2009).CrossRefGoogle Scholar
  35. 35.
    A. De Sy, Mod. Cast. 52, 67 (1967).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  1. 1.Materials Engineering ProgramÉcole Polytechnique de MontréalMontréalCanada
  2. 2.Federal-Mogul Corporation, Valve Seats and GuidesWaupunUSA
  3. 3.École Polytechnique de MontréalQuébecCanada

Personalised recommendations