Metallurgical and Materials Transactions B

, Volume 47, Issue 3, pp 1785–1795 | Cite as

Thermodynamic Considerations of Contamination by Alloying Elements of Remelted End-of-Life Nickel- and Cobalt-Based Superalloys

  • Xin Lu
  • Kazuyo Matsubae
  • Kenichi Nakajima
  • Shinichiro Nakamura
  • Tetsuya Nagasaka
Article

Abstract

Cobalt and nickel are high-value commodity metals and are mostly used in the form of highly alloyed materials. The alloying elements used may cause contamination problems during recycling. To ensure maximum resource efficiency, an understanding of the removability of these alloying elements and the controllability of some of the primary alloying elements is essential with respect to the recycling of end-of-life (EoL) nickel- and cobalt-based superalloys by remelting. In this study, the distribution behaviors of approximately 30 elements that are usually present in EoL nickel- and cobalt-based superalloys in the solvent metal (nickel, cobalt, or nickel-cobalt alloy), oxide slag, and gas phases during the remelting were quantitatively evaluated using a thermodynamic approach. The results showed that most of the alloying elements can be removed either in the slag phase or into the gas phase. However, the removal of copper, tin, arsenic, and antimony by remelting is difficult, and they remain as tramp elements during the recycling. On the other hand, the distribution tendencies of iron, molybdenum, and tungsten can be controlled by changing the remelting conditions. To increase the resource efficiency of recycling, preventing contamination by the tramp elements and identifying the alloying compositions of EoL superalloys are significantly essential, which will require the development of efficient prior alloy-sorting systems and advanced separation technologies.

References

  1. 1.
    International Resource Panel Working Group on the Global Metal Flows, UNEP: Job Number DTI/1534/PA, UNEP DTIE, France, Paris, 2013.Google Scholar
  2. 2.
    J.B. Guinée, J.C.J.M. van den Bergh, J. Boelens, P.J. Fraanje, G. Huppes, P.P.A.A.H. Kandelaars, T.M. Lexmond, S.W. Moolenaar, A.A. Olsthoorn, H.A.Udo de Haes, E. Verkuijlen, and E. van der Voet: Ecol. Econ., 1999, vol. 30, no. 1, pp. 47-65CrossRefGoogle Scholar
  3. 3.
    [3] G. M. Mudd: Resour. Policy, 2010, vol. 35, pp. 98-115.CrossRefGoogle Scholar
  4. 4.
    [4] T. E Norgate, S. Jahanshahi, and W. J. Rankin: J. Cleaner Prod., 2007, vol. 15, pp. 838-848.CrossRefGoogle Scholar
  5. 5.
    [5] B. H. Robinson: Sci. Total Environ., 2009, vol. 408, no. 2, pp. 183-191.CrossRefGoogle Scholar
  6. 6.
    [6] T. Norgate, and N. Haque: J. Cleaner Prod., 2010, vol. 18, no. 3, pp. 266-274.CrossRefGoogle Scholar
  7. 7.
    International Resource Panel Working Group on Decoupling, UNEP: Job Number DTI/1388/PA, UNEP DTIE, Paris, 2011.Google Scholar
  8. 8.
    U.S. Geological Survey: Data Series 140 Nickel Statistics, U.S. Geological Survey online publications, 2013.Google Scholar
  9. 9.
    U.S. Geological Survey: Data Series 140 Cobalt Statistics, U.S. Geological Survey online publications, 2013.Google Scholar
  10. 10.
    [10] J. M. Beér: Prog. Energy Combust. Sci., 2007, vol. 33, pp. 107-134.CrossRefGoogle Scholar
  11. 11.
    [11] A. Elshkaki, and T. E. Graedel: J. Cleaner Prod., 2013, vol. 59, pp. 260-273.CrossRefGoogle Scholar
  12. 12.
    U.S. Department of Energy (DOE): Report No. DOE/PI-0009, Washington, DC, December 2011.Google Scholar
  13. 13.
    UNEP: Job Number DTI/1202/PA, UNEP DTIE, Paris, July 2009.Google Scholar
  14. 14.
    [14] B. K. Reck, and V. S. Rotter: J. Ind. Ecol., 2012, vol. 16, no. 4, pp. 518-528.CrossRefGoogle Scholar
  15. 15.
    [15] G. M. Mudd: Ore Geol. Rev., 2010, vol. 38, pp. 9-26.CrossRefGoogle Scholar
  16. 16.
    [16] T. Norgate, and S. Jahanshahi: Miner. Eng., 2011, vol. 24, no. 7, pp. 698-707.CrossRefGoogle Scholar
  17. 17.
    [17] M. J. Eckelman: Resour. Conserv. Recycl., 2010, vol. 54, pp. 256-266.CrossRefGoogle Scholar
  18. 18.
    Cobalt Development Institute: Cobalt facts, 2015, pp. 53–55.Google Scholar
  19. 19.
    Business and Biodiversity Offsets Programme (BBOP): BBOP pilot project case study—Ambatovy Project, Antananarivo, January 2009.Google Scholar
  20. 20.
    [20] B. K. Reck, and T. E. Graedel: Science, 2012, vol. 337, pp. 690-695.CrossRefGoogle Scholar
  21. 21.
    [21] B. K. Reck, D. B. Müller, K. Rostkowski, and T. E. Graedel: Environ. Sci. Technol., 2008, vol. 42, no. 9, pp. 3394-3400.CrossRefGoogle Scholar
  22. 22.
    [22] E. M. Harper, G. Kavlak, and T. E. Graedel: Environ. Sci. Technol., 2012, vol. 46, pp. 1079-1086.CrossRefGoogle Scholar
  23. 23.
    [23] T. E. Graedel, J. Allwood, J. P. Birat, M. Buchert, C. Hagelüken, B. K. Reck, S. F. Sibley, and G. Sonnemann: J. Ind. Ecol., 2011, vol. 15, no. 3, pp. 355-366.CrossRefGoogle Scholar
  24. 24.
    N.S. Stoloff (1990) Metals Handbook. ASM International, Materials Park, OH, p. 950-980Google Scholar
  25. 25.
    [25] K. Nakajima, H. Ohno, Y. Kondo, K. Matsubae, O. Takeda, T. Miki, S. Nakamura, and T. Nagasaka: Environ. Sci. Technol., 2013, vol. 47, no. 9, pp. 4653-4660.CrossRefGoogle Scholar
  26. 26.
    [26] R. R. Srivastava, M. Kim, J. Lee, M. K. Jha, and B. Kim: J. Mater Sci., 2014, vol. 49, pp. 4671-4686.CrossRefGoogle Scholar
  27. 27.
    J.J. deBarbadillo: Metall. Trans. A, 1983, vol. 14, pp. 329-341.Google Scholar
  28. 28.
    J.W. Michael: Superalloys, 1980, 31-41.Google Scholar
  29. 29.
    [29] V. V. S. Prasad, A. S. Rao, U. Prakash, V. R. Rao, P. K. Rao, and K. M. Gupt: ISIJ Int., 1996, vol. 36, no. 12, pp. 1459-1464.CrossRefGoogle Scholar
  30. 30.
    [30] L. D. Redden, J. N. Greaves: Hydrometallurgy, 1992, vol. 29, pp. 547-565.CrossRefGoogle Scholar
  31. 31.
    R. Schlatter: Superalloys, 1972, A1-A40.Google Scholar
  32. 32.
    [32] A. Mitchell: ISIJ Int., 1992, vol. 32, no. 5, pp. 557-562.CrossRefGoogle Scholar
  33. 33.
    [33] K. Nakajima, O. Takeda, T. Miki, and T. Nagasaka: Mater. Trans., 2009, vol. 50, no. 3, pp. 453-460.CrossRefGoogle Scholar
  34. 34.
    [34] K. Nakajima, O. Takeda, T. Miki, K. Matsubae, S. Nakamura, and T. Nagasaka: Environ. Sci. Technol., 2010, vol. 44, pp. 5594-5600.CrossRefGoogle Scholar
  35. 35.
    [35] K. Nakajima, O. Takeda, T. Miki, K. Matsubae and T. Nagasaka: Environ. Sci. Technol., 2011, vol. 45, pp. 4929-4936.CrossRefGoogle Scholar
  36. 36.
    [36] T. Hiraki, O. Takeda, K. Nakajima, K. Matsubae, S. Nakamura, and T. Nagasaka: Sci. Technol. Adv. Mater., 2011, vol. 12, pp. 035003.CrossRefGoogle Scholar
  37. 37.
    [37] X. Lu, T. Hiraki, K. Nakajima, O. Takeda, K. Matsuabe, H. M. Zhu, S. Nakamura, and T. Nagasaka: Sep. Purif. Technol., 2012, vol. 89, pp. 135-141.CrossRefGoogle Scholar
  38. 38.
    [38] T. M. Pollock, and S. Tin: J. Propul. Power, 2006, vol. 22, no. 2, pp. 361-374.CrossRefGoogle Scholar
  39. 39.
    [39] M. T. Jovanović, B. Lukić, Z. Mišković, I. Bobić, I. Cvijović, and B. Dimčić: J. Metall., 2007, vol. 13, no. 2, pp. 91-106.Google Scholar
  40. 40.
    [40] I. Barin: Thermochemical Data of Pure Substances, 2nd ed., VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1993.Google Scholar
  41. 41.
    H.L. Lukas, S.G. Fries, B. Sundman (2007) Computational Thermodynamics. Cambridge University Press, New York, p. 104-110CrossRefGoogle Scholar
  42. 42.
    [42] X. J. Liu, F. Gao, C. P. Wang, and K. Ishida: J. Electron. Mater., 2008, vol. 37, no. 2, pp. 210-217.CrossRefGoogle Scholar
  43. 43.
    [43] W. Huang, and Y. A. Chang: Intermetallics, 1998, vol. 6, no. 6, pp. 487-498.CrossRefGoogle Scholar
  44. 44.
    [44] S. Uhland, H. Lechtman, and L. Kaufman: CALPHAD, 2001, vol. 25, no. 1, pp. 109-124.CrossRefGoogle Scholar
  45. 45.
    J. H. Wang, X. G. Lu, B. Sundman, and X. P. Su: CALPHAD, 2005, vol. 29, pp. 263-268.CrossRefGoogle Scholar
  46. 46.
    [46] C. E. Campbell, and U. R. Kattner: J. Phase Equilib., 1999, vol. 20, no. 5, pp. 485-496.CrossRefGoogle Scholar
  47. 47.
    J. Wang, F. G. Meng, L. B. Liu, and Z. P. Jin: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 139-145.CrossRefGoogle Scholar
  48. 48.
    F. Islam, and M. Medraj: CALPHAD, 2005, vol. 29, pp. 289-302.CrossRefGoogle Scholar
  49. 49.
    Z. Du, L. Yang, and G. Ling: J. Alloys Compd., 2004, vol. 375, pp. 186-190.CrossRefGoogle Scholar
  50. 50.
    A. F. Guillermet: Z. Metallkd., 1987, vol. 78, no. 9, pp. 639-647.Google Scholar
  51. 51.
    B. J. Lee: CALPHAD, 1992, vol. 16, no. 2, pp. 121-149.CrossRefGoogle Scholar
  52. 52.
    S. A. Mey: CALPHAD, 1992, vol. 16, no. 3, pp. 255-260.CrossRefGoogle Scholar
  53. 53.
    M. Li, and W. Han: CALPHAD, 2009, vol. 33, pp. 517-520.CrossRefGoogle Scholar
  54. 54.
    [54] A. Gabriel, P. Gustafson, and L. Ansara: CALPHAD, 1987, vol. 11, no. 2, pp. 203-218.CrossRefGoogle Scholar
  55. 55.
    Y. Q. Liu, D. J. Ma, and Y. Du: J. Alloys Compd., 2010, vol. 491, pp. 63-71.CrossRefGoogle Scholar
  56. 56.
    Z. Du, and W. Zhang: J. Alloys Compd., 1996, vol. 245, pp. 164-167.CrossRefGoogle Scholar
  57. 57.
    M. H. G. Jacobs, and P. J. Spencer: CALPHAD, 1998, vol. 22, no. 4, pp. 513-525.CrossRefGoogle Scholar
  58. 58.
    J. Miettinen: CALPHAD, 2001, vol. 25, no. 1, pp. 43-58.CrossRefGoogle Scholar
  59. 59.
    S. H. Zhou, Y. Wang, C. Jiang, J. Z. Zhu, L. Q. Chen, Z. K. Liu: Mater. Sci. Eng. A, 2005, vol. 397, pp. 288-296.CrossRefGoogle Scholar
  60. 60.
    H. L. Chen, and Y. Du: CALPHAD, 2006, vol. 30, pp. 308-315.CrossRefGoogle Scholar
  61. 61.
    I. Kainulainen, P. Taskinen, and J. Gisby: CALPHAD, 2010, vol. 34, pp. 441-445.CrossRefGoogle Scholar
  62. 62.
    G. Ghosh, C. Kantner, and G. B. Olson: J. Phase Equilib., 1999, vol. 23, no. 3, pp. 295-308.CrossRefGoogle Scholar
  63. 63.
    X. G. Lu, B. Sundman, and J. Ågren: CALPHAD, 2009, vol. 33, pp. 450-456.CrossRefGoogle Scholar
  64. 64.
    K. Yaqoob, and J. Joubert: J. Solid State Chem., 2012, vol. 196, pp. 320-325.CrossRefGoogle Scholar
  65. 65.
    Y. Zhang, C. Li, Z. Du, and C. Guo: CALPHAD, 2008, vol. 32, pp. 378-388.CrossRefGoogle Scholar
  66. 66.
    T. Tokunaga, K. Nishio, H. Ohtani, and M. Hasebe: CALPHAD, 2003, vol. 27, pp. 161-168.CrossRefGoogle Scholar
  67. 67.
    H. S. Liu, J. Wang, and Z. P. Jin: CALPHAD, 2004, vol. 28, pp. 363-370.CrossRefGoogle Scholar
  68. 68.
    [68] S. H. Zhou, Y. Wang, L. Q. Chen, Z. K. Liu, and R. E. Napolitano: CALPHAD, 2009, vol. 33, pp. 631-641.CrossRefGoogle Scholar
  69. 69.
    [69] P. Bellen, K. C. Hari Kumar, and P. Wollants: Z. Metallkd., 1996, vol. 87, no. 12, pp. 972-978.Google Scholar
  70. 70.
    [70] C. P. Wang, Y. He, H. L. Zhang, and X. J. Liu: J. Alloys Compd., 2009, vol. 487, pp. 126-131.CrossRefGoogle Scholar
  71. 71.
    [71] P. Gustafson, A. Gabriel, and I. Ansara: Z. Metallkd., 1987, vol. 78, no. 2, pp. 151-156.Google Scholar
  72. 72.
    [72] Z. Du, D. Wang, and W. Zhang: J. Alloys Compd., 1998, vol. 264, pp. 209-213.CrossRefGoogle Scholar
  73. 73.
    [73] W. Xiong, H. Xu, and Y. Du: CALPHAD, 2011, vol. 35, pp. 276-283.CrossRefGoogle Scholar
  74. 74.
    [74] N. Wang, C. R. Li, Z. M. Du, and F. Wang: CALPHAD, 2007, vol. 31, pp. 413-421.CrossRefGoogle Scholar
  75. 75.
    [75] W. J. Zhu, H. S. Liu, J. S. Wang, H. Q. Dong, Z. P. Jin: J. Alloys Compd., 2009, vol. 481, pp. 503-508.CrossRefGoogle Scholar
  76. 76.
    [76] H. Ohtani, M. Yamano, and M. Hasebe: CALPHAD, 2004, vol. 28, pp. 177-190.CrossRefGoogle Scholar
  77. 77.
    H. Okamoto, T.B. Massaiski, M. Hasebe, and T. Nishizawa (1985) Bull. Alloy Phase Diagr., 6(5):449-454.CrossRefGoogle Scholar
  78. 78.
    [78] Y. Du, J. C. Schuster, Y. A. Chang, Z. Jin, and B. Huang: Z. Metallkd., 2002, vol. 93, no. 11, pp. 1157-1163.CrossRefGoogle Scholar
  79. 79.
    [79] X. Su, W. Zhang, and Z. Du: J. Alloys Compd., 1998, vol. 267, pp. 121-127.CrossRefGoogle Scholar
  80. 80.
    [80] A. Kusoffsky, and B. Jansson: CALPHAD, 1997, vol. 21, no. 3, pp. 321-333.CrossRefGoogle Scholar
  81. 81.
    J. Kubišta, and J. Vřeštál (2000) J. Phase Equilib., vol. 21, no. 2, pp. 125-129.CrossRefGoogle Scholar
  82. 82.
    [82] I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani, B. Sundman, and K. Ishida: Acta Mater., 2002, vol. 50, pp. 379-393.CrossRefGoogle Scholar
  83. 83.
    [83] A. Chari, A. Garay, and R. Arróyave: CALPHAD, 2010, vol. 34, pp. 189-195.CrossRefGoogle Scholar
  84. 84.
    [84] Z. K. Liu, W. Zhang, and B. Sundman: J. Alloys Compd., 1995, vol. 226, pp. 33-45.CrossRefGoogle Scholar
  85. 85.
    [85] C. P. Wang, J. Wang, X. J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida: J. Alloys Compd., 2008, vol. 453, pp. 174-179.CrossRefGoogle Scholar
  86. 86.
    [86] W. M. Huang: CALPHAD, 1989, vol. 13, no. 3, pp. 231-242.CrossRefGoogle Scholar
  87. 87.
    [87] A. Davydov, and U. R. Kattner: J. Phase Equilib., 1999, vol. 20, no. 1, pp. 5-16.CrossRefGoogle Scholar
  88. 88.
    K.C. HariKumar, I. Ansara, P. Wollants, and L. Delaey (1998) J. Alloys Compd. vol. 267, pp. 105-112.CrossRefGoogle Scholar
  89. 89.
    [89] D. E. Kim, J. E. Saal, L. C. Zhou, S. L. Shang, Y. Du, and Z. K. Liu: CALPHAD, 2011, vol. 35, pp. 323-330.CrossRefGoogle Scholar
  90. 90.
    [90] Y. Zhang, C. Li, Z. Du, and T. Gang: CALPHAD, 2008, vol. 32, pp. 56-63.CrossRefGoogle Scholar
  91. 91.
    [91] L. J. Zhang, Y. Du, H. H. Xu, and Z. Pan: CALPHAD, 2006, vol. 30, pp. 470-481.CrossRefGoogle Scholar
  92. 92.
    [92] M. Jiang, J. Sato, I. Ohnuma, R. Kainuma, and K. Ishida: CALPHAD, 2004, vol. 28, pp. 213-220.CrossRefGoogle Scholar
  93. 93.
    [93] Z. K. Liu, and Y. A. Chang: CALPHAD, 1999, vol. 23, no. 3-4, pp. 339-356.CrossRefGoogle Scholar
  94. 94.
    [94] G. Cacciamani, R. Ferro, I. Ansara, and N. Dupin: Intermetallics, 2000, vol. 8, pp. 213-222.CrossRefGoogle Scholar
  95. 95.
    [95] J. Wang, X. J. Liu, and C. P. Wang: J. Nucl. Mater., 2008, vol. 374, pp. 79-86.CrossRefGoogle Scholar
  96. 96.
    [96] S. Huang, L. Li, O. Van der Biest, and J. Vleugels: J. Alloys Compd., 2004, vol. 385, pp. 114-118.CrossRefGoogle Scholar
  97. 97.
    [97] A. F. Guillermet: Metall. Trtrans. A, 1989, vol. 20, no. 5, pp. 935-956.CrossRefGoogle Scholar
  98. 98.
    [98] Z. Du, and D. Lu: J. Alloys Compd., 2004, vol. 373, pp. 171-178.CrossRefGoogle Scholar
  99. 99.
    [99] I. Isomäki, and M. Hämäläinen: J. Alloys Compd., 2004, vol. 375, pp. 191-195.CrossRefGoogle Scholar
  100. 100.
    [100] A. Durga, and K. C. Hari Kumar: CALPHAD, 2010, vol. 34, pp. 200-205.CrossRefGoogle Scholar
  101. 101.
    [101] Z. Du, and D. Lü: Intermetallics, 2005, vol. 13, pp. 586-595.CrossRefGoogle Scholar
  102. 102.
    [102] A. F. Guillermet: CALPHAD, 1989, vol. 13, no. 1, pp. 1-22.CrossRefGoogle Scholar
  103. 103.
    [103] K. T. Jacob, S. Srikanth, and G. N. K. Iyengar: Bull. Mater. Sci., 1986, vol. 8, no. 1, pp. 71-79.CrossRefGoogle Scholar
  104. 104.
    [104] A. T. Dinsdale: CALPHAD, 1991, vol. 15, no. 4, pp. 317-425.CrossRefGoogle Scholar
  105. 105.
    [105] R. T. Holt and W. Wallace: Int. Met. Rev., 1976, vol. 21, no. 1, pp. 1-24.CrossRefGoogle Scholar
  106. 106.
    A.V. Naumov (2007) Russ. J. Non-Ferrous Met., vol. 48, no. 6, pp. 418-423.CrossRefGoogle Scholar
  107. 107.
    D.R. Leal-Ayala, J.M. Allwood, E. Petavratzi, T.J. Brown, and G. Gunn (2015) Resour., Conserv. Recycl., vol. 103, pp. 19-28.CrossRefGoogle Scholar
  108. 108.
    [108] G. Li, F. Tsukihashi: ISIJ Int., 2001, vol. 41, no. 11, pp. 1303-1308.CrossRefGoogle Scholar
  109. 109.
    R.U. Pagador, M. Hino, and K. Itagaki (1999) Mater. Trans. JIM, vol. 40, no. 3, pp. 225-232.CrossRefGoogle Scholar
  110. 110.
    [110] H. M. Henao, M. Hino, and K. Itagaki: Mater. Trans., 2001, vol. 42, no. 9, pp. 1959-1966.CrossRefGoogle Scholar
  111. 111.
    [111] H. M. Henao, and K. Itagaki: Metall. Mater. Trans. B, 2004, vol. 35, pp. 1041-1049.CrossRefGoogle Scholar
  112. 112.
    J. Hait, R.K. Jana, and S.K. Sanyal (2009) Trans. Inst. Min. Metall. Sect. C, vol. 118, no. 4, pp. 240-252.Google Scholar
  113. 113.
    [113] A. T. Ali, K. S. Rao, C. Laxman, N. R. Munirathnam, and T. L. Prakash: Sep. Purif. Technol., 2012, vol. 85, pp. 178-182.CrossRefGoogle Scholar
  114. 114.
    [114] S. Itoh, A. Tsubone, K. Matsubae-Yokoyama, K. Nakajima, and T. Nagasaka: ISIJ Int., 2008, vol. 48, no. 10, pp. 1339-1344.CrossRefGoogle Scholar
  115. 115.
    [115] K. Nakajima, K. Matsubae-Yokoyama, S. Nakamura, S. Itoh, and T. Nagasaka: ISIJ Int., 2008, vol. 48, no. 10, pp. 1478-1483.CrossRefGoogle Scholar
  116. 116.
    [116] S. Nakamura, and E. Yamasue: Environ. Sci. Technol., 2010, vol. 44, pp. 4402-4408.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Xin Lu
    • 1
  • Kazuyo Matsubae
    • 1
  • Kenichi Nakajima
    • 2
  • Shinichiro Nakamura
    • 3
  • Tetsuya Nagasaka
    • 1
  1. 1.Graduate School of EngineeringTohoku UniversityMiyagiJapan
  2. 2.Center for Material Cycles and Waste Management ResearchNational Institute for Environmental StudiesIbarakiJapan
  3. 3.Faculty of Political Science and EconomicsWaseda UniversityTokyoJapan

Personalised recommendations