Metallurgical and Materials Transactions B

, Volume 47, Issue 3, pp 1527–1531 | Cite as

Investigation of Thermal and Mechanical Properties of Quenchable High-Strength Steels in Hot Stamping

  • Anton Gorriño
  • Carlos Angulo
  • Maider Muro
  • Julian Izaga


The interfacial heat transfer coefficient (IHTC) is determined in the industrial range of contact pressure applied during the hot stamping process of boron steel sheets, under similar conditions to those used in industrial practice. The mechanical properties and microstructure of the parts are also examined. Moreover, the influence of the stamping pressure on the IHTC is investigated in detail via mechanical property and microstructural characterization.


Contact Pressure Wire Electrical Discharge Machine Interfacial Heat Transfer Coefficient Boron Steel 22MnB5 Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


The authors gratefully acknowledge the funding provided by the Department of Research and Universities of the Basque Government under Grant No. IT432-10, and the University of the Basque Country UPV/EHU under Program No. UFI 11/29. The authors also thank Gestamp GTH for having allowed them to use their facilities, which made this investigation possible.


  1. 1.
    M. Merklein, and J. Lechler: SAE Int. J. Mater. Manuf., 2008, vol. 1, pp. 411–426.CrossRefGoogle Scholar
  2. 2.
    B. Abdulhay, B. Bourouga, C. Dessain: Appl. Therm. Eng., 2011, vol. 31, pp. 674–685.CrossRefGoogle Scholar
  3. 3.
    P. Hu, L. Ying, Y. Li, and Z. Liao: J. Mater. Process. Tech., 2013, vol. 213:1475–1483.CrossRefGoogle Scholar
  4. 4.
    T. Nishibata, and N. Kojima: J. Alloys Compd., 2013, vol. 577S, pp. S549–S554.CrossRefGoogle Scholar
  5. 5.
    H. Karbasian, and A.E. Tekkaya: J. Mater. Process. Tech., 2010, vol. 210, pp. 2103–2118.CrossRefGoogle Scholar
  6. 6.
    M. Merklein, J. Lechler, and T. Stoehr: Int. J. Mater. Form., 2009, vol. 2, pp. 259–262.CrossRefGoogle Scholar
  7. 7.
    A. Bardelcik, C.P. Salisbury, S. Winkler, M.A. Wells, and M.J. Worswick: Int. J. Impact Eng., 2010, vol. 37, pp. 694–702.CrossRefGoogle Scholar
  8. 8.
    M. Naderi, M. Ketabchi, M. Abbasi, and W. Bleck: J. Mater. Process. Tech., 2011, vol. 211, pp. 1117–1125.CrossRefGoogle Scholar
  9. 9.
    P. Bosetti, S. Bruschi, T. Stoehr, J. Lechler, and M. Merklein: Int. J. Mater. Form., 2010, vol. 3, pp. 817–820.CrossRefGoogle Scholar
  10. 10.
    E.J.F.R. Caron, K.J. Daun, and M.A. Wells: Int. J. Heat Mass Tran., 2014, vol. 71, pp. 396–404.CrossRefGoogle Scholar
  11. 11.
    Z. Zhang, P. Gao, C. Liu, and X. Li: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2419–22.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Anton Gorriño
    • 1
  • Carlos Angulo
    • 1
  • Maider Muro
    • 2
  • Julian Izaga
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of the Basque Country (UPV/EHU)BilbaoSpain
  2. 2.Metallurgy Research Centre IK4 AZTERLANDurangoSpain

Personalised recommendations