Advertisement

Metallurgical and Materials Transactions B

, Volume 47, Issue 3, pp 1548–1552 | Cite as

Application of Non-Arrhenius Models to the Viscosity of Mold Flux

  • Lejun Zhou
  • Wanlin Wang
Communication

Abstract

The mold flux in continuous casting mold experiences a significant temperature gradient ranging from more than 1773 K (1500 °C) to room temperature, and the viscosity of the mold flux would therefore have a non-Arrhenius temperature dependency in such a wide temperature region. Three non-Arrhenius models, including Vogel–Fulcher–Tammann (VFT), Adam and Gibbs (AG), and Avramov (AV), were conducted to describe the relationship between the viscosity and temperature of mold flux in the temperature gradient existing in the casting mold. It found that the results predicted by the VFT and AG models are closer to the measured ones than those by the AV model and that they are much better than the Arrhenius model in characterizing the variation of viscosity of mold flux vs temperature. In addition, the VFT temperature and AG temperature can be considered to be key benchmarks in characterizing the lubrication ability of mold flux beyond the break temperature and glass transition temperature.

Keywords

Molten Steel Mold Flux Arrhenius Model Potential Energy Barrier Continuous Casting Mold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

This work was financially supported by the National Science Foundation of China (51504294, 51322405), and the Opening Foundation of the State Key Laboratory of Advanced Metallurgy (KF14-10) is great acknowledged.

References

  1. 1.
    1. T. Kajitani, Y. Kato, K. Harada, K. Saito, K. Harashima, and W. Yamada: ISIJ Int., 2008, vol. 48, pp. 1215-24.CrossRefGoogle Scholar
  2. 2.
    2. E. Takeuchi and J.K. Brimacombe: Metall. Trans. B, 1984, vol. 15, pp. 493-509.CrossRefGoogle Scholar
  3. 3.
    B. Thomas and J. Sengupta: JOM, vol. 58, pp. 16–18.Google Scholar
  4. 4.
    4. Y. Chung and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 957-71.CrossRefGoogle Scholar
  5. 5.
    5. H. Harmuth and G. Xia: ISIJ Int., 2015, vol. 55, pp. 775-80.CrossRefGoogle Scholar
  6. 6.
    6. G. Kim and I.L. Sohn: Metall. Mater. Trans. B, 2013, vol. 45, pp. 86-95.Google Scholar
  7. 7.
    7. L. Zhou, W. Wang, and K. Zhou: ISIJ Int., 2015, vol. 55, pp. 1916-24.CrossRefGoogle Scholar
  8. 8.
    8. Z. Zhang, G. Wen, P. Tang, and S. Sridhar: ISIJ Int., 2008, vol. 48, pp. 739-46.CrossRefGoogle Scholar
  9. 9.
    A. Cramb: AISI/DOE Technology Roadmap Program, 2003.Google Scholar
  10. 10.
    10. Y. Meng and B. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 685-705.CrossRefGoogle Scholar
  11. 11.
    D.H. Vogel Das: Physikalische Zeitschrift, 1921, vol. 22, pp. 645–46.Google Scholar
  12. 12.
    12. G.S. Fulcher: J. Am. Ceram. Soc., 1925, vol. 8, pp. 339-55.CrossRefGoogle Scholar
  13. 13.
    13. G. Tammann and W. Hesse: Z. Anorg. Allg. Chem., 1926, vol. 156, pp. 245-57.CrossRefGoogle Scholar
  14. 14.
    14. D. Giordano and D. Dingwell: Earth Planet. Sci. Let., 2003, vol. 208, pp. 337-49.CrossRefGoogle Scholar
  15. 15.
    15. D. Giordano, J. Russell, and D. Dingwell: Earth Planet. Sci. Let., 2008, vol. 271, pp. 123-34.CrossRefGoogle Scholar
  16. 16.
    16. J. Rault: J. Non-Cryst. Solids, 2000, vol. 271, pp. 177-17.CrossRefGoogle Scholar
  17. 17.
    17. H. Lu and W. Huang: Smart Mater. Struct. 2013, vol. 22, pp. 1-8.Google Scholar
  18. 18.
    18. S. Salema, S. Jazayeri, F. Bondioli, A. Allahverdi, and M. Shirvani: Thermochim. Acta, 2011, vol. 521, pp. 191-96.CrossRefGoogle Scholar
  19. 19.
    19. B. Mokhtarani, A. Sharifi, H. Mortaheb, M. Mirzaei, M. Mafi, and F. Sadeghian: J. Chem. Thermodyn., 2009, vol. 41, pp. 323-29.CrossRefGoogle Scholar
  20. 20.
    20. G. Adam and J. Gibbs: J. Chem. Phys., 1965, vol. 43, pp. 139-46.CrossRefGoogle Scholar
  21. 21.
    21. Y. Bottinga and Daniel F. Weill: Amer. J. Sci., 1972, vol. 272, pp. 438-75.CrossRefGoogle Scholar
  22. 22.
    22. D. Thinker, C. Lesher, G. Baxter, T. Uchida, and Y. Wang: Am. Mineral., 2004, vol. 89, pp. 1701-708.CrossRefGoogle Scholar
  23. 23.
    23. P. Hrma: J. Non-Cryst. Solids, 2008, vol. 354, pp. 3389-99.CrossRefGoogle Scholar
  24. 24.
    24. R. Xiao and T. Nguyen: Soft Matter., 2013, vol. 9, pp. 9455-64.CrossRefGoogle Scholar
  25. 25.
    25. I. Avramov: J. Non-Cryst. Solids, 1998, vol. 238, pp. 6-10.CrossRefGoogle Scholar
  26. 26.
    A. Puzenko, P. Ben, and M. Paluch: J. Chem. Phys., 2007, vol. 127, pp. 094503 (1)–(4).Google Scholar
  27. 27.
    27. M. Longinotti, J. Gonzalez, and H. Corti: Cryobiology, 2014, vol. 69, pp. 84-90.CrossRefGoogle Scholar
  28. 28.
    28. T. Nentwig, A. Kondratiev, E. Yazhenskikh, K. Hack, and M. Müller: Energ. Fuel., 2013, vol. 27, pp. 6469-76.CrossRefGoogle Scholar
  29. 29.
    29. L. Zhou, W. Wang, B. Lu, and G. Wen: Metall. Mater. Int., 2015, vol. 21, pp. 126-33.CrossRefGoogle Scholar
  30. 30.
    30. L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuur, and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43, pp. 354-62.CrossRefGoogle Scholar
  31. 31.
    L. Zhou, W. Wang, D. Huang, J. Wei, and J. Li: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 925-26.CrossRefGoogle Scholar
  32. 32.
    32. E. Kurnianto, A. Shinjo, and D. Suga: Asian Austral. J. Anim. Sci., 1999, vol. 12, pp. 331-35.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaP.R. China

Personalised recommendations