Advertisement

Metallurgical and Materials Transactions B

, Volume 47, Issue 4, pp 2107–2113 | Cite as

Some Aspects of Interfacial Phenomena in Steelmaking and Refining

  • L. J. Wang
  • N. N. Viswanathan
  • L. Muhmood
  • E. Kapilashrami
  • S. Seetharaman
Article
  • 441 Downloads

Abstract

Unique experiments were designed to study the surface phenomena in steelmaking reactions. The concept of surface sulfide capacities and an understanding of the surface accumulation of surface-active species, based on experimental results, are presented. In order to understand the flow phenomenon at slag/metal interface, experiments were designed to measure the interfacial velocity of S on the surface of an iron drop immersed in an aluminosilicate slag using the X-ray sessile drop method. The oscillation of the iron drop in the slag due to the change in the surface concentration of sulfur at the slag–metal interface was monitored by X-ray imaging. From the observations, the interfacial velocity of sulfur was evaluated. Similar experiments were performed to measure the interfacial velocity of oxygen at the interface as well as the impact of oxygen potential on the interfacial velocity of sulfur. The interfacial shear viscosity and the dilatational modulus were also evaluated. In a study of the wetting of alumina base by iron drop at constant oxygen pressure under isothermal condition, the contact angle was found to be decreased with the progress of the reaction leading to the formation of hercynite as an intermediate layer creating non-wetting conditions. In the case of silica substrate, an intermediate liquid fayalite layer was formed.

Keywords

Contact Angle Interfacial Velocity Interfacial Phenomenon Sulfide Capacity Hercynite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful for the financial support of Beijing Higher Education Young Elite Teacher Project (YETP0349), as well as the Fundamental Research Funds for the Central Universities (FRF-TP-15-052A3).

References

  1. 1.
    H.Sun, K. Nakashima, and K. Mori: Iron Steel Inst. Jpn. Int., 1997, Vol. 37, pp. 323–31.CrossRefGoogle Scholar
  2. 2.
    T. Utigard and J. M. Toguri: metal. Trans. B, 1985, vol. 16B, pp.333-38.CrossRefGoogle Scholar
  3. 3.
    A. Chatterjee, M.O. Lindfors, and J.A. Wester: Ironmaking Steelmaking, 1976, vol. 3 (1), pp. 21–32.Google Scholar
  4. 4.
    R.Sarkar, P.Gupta, S. Basu and N. B. Ballal: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 961-976.CrossRefGoogle Scholar
  5. 5.
    I. Langmuir, (1918). “The Adsorption of Gases on Plane Surface of Glass, Mica and Platinum”. The Research Laboratory of The General Electric Company: 1361–1402. doi: 10.1021/ja02242a004. Retrieved 11 June 2013.
  6. 6.
    J.W. Gibbs, Collected Works vol. 1 Yale University Press, New Haven, CT, 1948.Google Scholar
  7. 7.
    G.R. Belton, Metall. Trans. 1972, vol.3, pp.1465.CrossRefGoogle Scholar
  8. 8.
    A.K. Lahiri and A. Yogambal: Proc Mills Symp; Met, Slags & Glasses: High Temp. Prop. & Phen., IoM, London, 2002, vol. 1, pp. 231–38.Google Scholar
  9. 9.
    L. J. Wang, J. P. Yu, K. C. Chou, and S. Seetharaman, Metall. Mater. Trans. B, 2015, vol. 46B(4), pp 1802-1808.CrossRefGoogle Scholar
  10. 10.
    L. J. Wang and S. Seetharaman, Metall. Mater. Trans. B, 2010, vol. 41B, pp.946-954.CrossRefGoogle Scholar
  11. 11.
    L. J. Wang and S. Seetharaman, Metall. Mater, Trans. B, 2010, vol. 41B, pp.368-373.Google Scholar
  12. 12.
    L. J. Wang, M. Hayashi, K. C.Chou and S. Seetharaman. Metal. Mater. Trans. 2012, vol. 43 B, pp. 1338-1343.CrossRefGoogle Scholar
  13. 13.
    L. Muhmood, N. N. Viswanathan and S. Seetharaman, Metall. Mater. Trans B. 2011, vol. 42B, pp. 460-470.CrossRefGoogle Scholar
  14. 14.
    L. Muhmood, N. N. Viswanathan and S. Seetharaman, Int.J. Mat. Res., 2012, vol. 03(7), pp. 875-883,CrossRefGoogle Scholar
  15. 15.
    L. Muhmood, and S. Seetharaman, Metall. Mater. Trans. B, 2010, 41B, pp. 833-840.CrossRefGoogle Scholar
  16. 16.
    L. Muhmood, N. N. Viswanathan and S. Seetharaman, Metall. Mater. Trans. B, 2011, 42B, pp. 274-80.CrossRefGoogle Scholar
  17. 17.
    W. Cao, L. Muhmood and S. Seetharaman, Metall. Mater. Trans. B, 2012, vol. 43B, 363-69.CrossRefGoogle Scholar
  18. 18.
    W. CaO, Ph. D. thesis, Royal Institute of Technology, Stockholm, Sweden, 2010.Google Scholar
  19. 19.
    L. Muhmood, Ph. D. thesis, Royal Institute of Technology, Stockholm, Sweden, 2010.Google Scholar
  20. 20.
    E. Kapilashrami, A.K. Lahiri and S. Seetharaman, Steel Grips, 2003, vol. 1, pp.126-132.Google Scholar
  21. 21.
    E. Kapilashrami, A. Jakobsson, A. K. Lahiri and S. Seetharaman, Metall. Mater. Trans. 2003, vol. 34 B, pp. 193-99.CrossRefGoogle Scholar
  22. 22.
    E. Kapilashrami, A. K. Lahiri, A. W. Cramb and S. Seetharaman, Metall. Mater. Trans. B, 2003, vol. 34B, pp.647-652.CrossRefGoogle Scholar
  23. 23.
    E. Kapilashrami, V. Sahajjwala and S. Seetharaman, ISIJ International, 2004, vol. 44, pp. 653-59.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • L. J. Wang
    • 1
  • N. N. Viswanathan
    • 2
    • 3
  • L. Muhmood
    • 4
  • E. Kapilashrami
    • 5
  • S. Seetharaman
    • 6
  1. 1.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.Minerals and Metals Processing LaboratoryLuleå University of TechnologyLuleåSweden
  3. 3.Centre of Excellence in Steel Technology (CoEST)Indian Institute of Technology BombayMumbaiIndia
  4. 4.KJ Somaiya College of EngineeringMumbaiIndia
  5. 5.SSABOxelosundSweden
  6. 6.Royal Institute of TechnologyStockholmSweden

Personalised recommendations