Metallurgical and Materials Transactions B

, Volume 47, Issue 4, pp 2133–2147 | Cite as

Ferrite Formation Dynamics and Microstructure Due to Inclusion Engineering in Low-Alloy Steels by Ti2O3 and TiN Addition

  • Wangzhong Mu
  • Hiroyuki Shibata
  • Peter Hedström
  • Pär Göran Jönsson
  • Keiji Nakajima


The dynamics of intragranular ferrite (IGF) formation in inclusion engineered steels with either Ti2O3 or TiN addition were investigated using in situ high temperature confocal laser scanning microscopy. Furthermore, the chemical composition of the inclusions and the final microstructure after continuous cooling transformation was investigated using electron probe microanalysis and electron backscatter diffraction, respectively. It was found that there is a significant effect of the chemical composition of the inclusions, the cooling rate, and the prior austenite grain size on the phase fractions and the starting temperatures of IGF and grain boundary ferrite (GBF). The fraction of IGF is larger in the steel with Ti2O3 addition compared to the steel with TiN addition after the same thermal cycle has been imposed. The reason for this difference is the higher potency of the TiO x phase as nucleation sites for IGF formation compared to the TiN phase, which was supported by calculations using classical nucleation theory. The IGF fraction increases with increasing prior austenite grain size, while the fraction of IGF in both steels was the highest for the intermediate cooling rate of 70 °C/min, since competing phase transformations were avoided, the structure of the IGF was though refined with increasing cooling rate. Finally, regarding the starting temperatures of IGF and GBF, they decrease with increasing cooling rate and the starting temperature of GBF decreases with increasing grain size, while the starting temperature of IGF remains constant irrespective of grain size.


Ferrite Austenite Bainite Prior Austenite Increase Cool Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Assistant Professor Sohei Sukenaga and Mr. Terui (IMRAM, Tohoku University) for their assistance of the experiment. Professor Shigeru Suzuki and Dr. Yusuke Onuki (IMRAM, Tohoku University) are also acknowledged for the discussion on the EBSD analyses. W.M is grateful to the China Scholarship Council (CSC) for the financial support enabling his studies at KTH Royal Institute of Technology. He is also grateful to the JASSO Scholarship foundation for the financial support for his research at Tohoku University.


  1. 1.
    J. Takamura and S. Mizoguchi: Proc. 6th Int. Iron and Steel Cong, ISIJ, Nagoya, 1990, vol. 1, pp. 591–97.Google Scholar
  2. 2.
    O. Wijk: Proc. 7th Int. Conf. Refining Process (SCANINJECT VII), Luleå, Sweden, 1995, pp. 35–67.Google Scholar
  3. 3.
    Ø. Grong, L. Kolbeinsen, C. van der Eijk and G. Tranell: ISIJ Int., 2006, vol. 46, pp. 824-31.CrossRefGoogle Scholar
  4. 4.
    M. Kiviö and L. Holappa: Metall. Mater. Trans. B., 2012, vol. 43B, pp. 233-40.CrossRefGoogle Scholar
  5. 5.
    W. Mu, P. G. Jönsson and K. Nakajima: ISIJ Int., 2014, vol. 54, pp. 2907-16.CrossRefGoogle Scholar
  6. 6.
    W. Mu, P. G. Jönsson, H. Shibata and K. Nakajima: Steel Res. Int., 2015, DOI:  10.1002/srin.201500061.Google Scholar
  7. 7.
    H. Terasaki, T. Yamada and Y. Komizo: Mater. Sci. Forum, 2008, vol. 580-582, pp. 33-6.CrossRefGoogle Scholar
  8. 8.
    W. Bin and S. Bo: Steel Res. Int., 2012, vol. 83, pp. 487-95.CrossRefGoogle Scholar
  9. 9.
    B. Wen and B. Song: Ninth International Conference on Molten Slags, Fluxes and Salts (Molten 12), Beijing, 2012, p. 160.Google Scholar
  10. 10.
    X. Wan, K. Wu, G. Huang and R. Wei: Steel Res. Int., 2014, vol. 85, pp. 243-50.CrossRefGoogle Scholar
  11. 11.
    D. Zhang, H. Terasaki, and Y. Komizo: Acta Mater., 2010, vol. 58, pp. 1369-78.CrossRefGoogle Scholar
  12. 12.
    D. Zhang, Y. Shintaku, S. Suzuki and Y. Komizo: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 447-58.CrossRefGoogle Scholar
  13. 13.
    N. Kikuchi, S. Nabeshima, Y. Kishimoto, Y. Ishiguro and S. Sridhar: ISIJ Int., 2009, vol. 49, pp. 1036-45.CrossRefGoogle Scholar
  14. 14.
    T. Yamada, H. Terasaki and Y. Komizo: Weld. Int., 2009, vol. 23, pp. 376-81.CrossRefGoogle Scholar
  15. 15.
    A.O. Kluken, Ø. Grong and J. Hjelen: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 657-63.CrossRefGoogle Scholar
  16. 16.
    C. van der Eijk, Ø. Grong, and J. Hjelen: in Proc. Int. Conf. on Solid-solid Phase Trans.’99 (JIMIC-3), M. Koiwa, K. Otsuka, and T. Miyazaki, eds., JIM, Sendai, 1999, pp. 1573–76.Google Scholar
  17. 17.
    X. L. Wan, H. H. Wang, L. Cheng and K. M. Wu: Mater. Character., 2012, vol. 67, pp. 41-51.CrossRefGoogle Scholar
  18. 18.
    L. Cheng and K. M. Wu: Acta Mater., 2009, vol. 57, pp. 3754-62.CrossRefGoogle Scholar
  19. 19.
    D. Phelan, R. Dippenaar: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3701-6.CrossRefGoogle Scholar
  20. 20.
    A. Phelan, N. Stanford and R. Dippenaar: Mater. Sci. Eng. A, 2005, vol. 407, pp. 127-34.CrossRefGoogle Scholar
  21. 21.
    H. Chikama, H. Shibata, T. Emi and M. Suzuki: Mater. Trans. JIM, 1996, vol. 37, pp. 620-26.CrossRefGoogle Scholar
  22. 22.
    H. Shibata, H.B. Yin, S. Yoshinaga, T. Emi and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 149-56.CrossRefGoogle Scholar
  23. 23.
    K. Nakajima and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 629-41.CrossRefGoogle Scholar
  24. 24.
    Q. Liu, H. Shibata, P. Hedström, P. Jönsson and K, Nakajima: ISIJ Int., 2013, vol. 53, pp. 1237-44.CrossRefGoogle Scholar
  25. 25.
    J. Janis, R. Inoue, A. Karasev, K. Nakajima and P. G. Jönsson : Steel Research Int., 2009, vol. 80, pp. 450-456.Google Scholar
  26. 26.
    K.F. Kelton, A.L. Greer: Nucleation in Condensed Matter - Application in Materials and Biology, Elsevier, Oxford, UK, 2010, pp. 165-226.CrossRefGoogle Scholar
  27. 27.
    J-O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman, Calphad, 2002, vol. 26, pp. 273-312.CrossRefGoogle Scholar
  28. 28.
    TCS Steels/Fe-Alloys Database Version 7.0, Thermo-Calc Software AB, Sweden, 2012.Google Scholar
  29. 29.
    T. Furuhara: Tetsu-to-Hagané, 2003, vol. 89, pp. 497-509.Google Scholar
  30. 30.
    Z.-G. Yang, M. Enomoto: Mater. Sci. Eng. A, 2002, vol. 332, pp. 184-92.CrossRefGoogle Scholar
  31. 31.
    Z.-G. Yang, M. Enomoto: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 267-74.CrossRefGoogle Scholar
  32. 32.
    M. Enomoto: Metal. Mater., 1998, vol. 4, pp. 115-23.CrossRefGoogle Scholar
  33. 33.
    Z.-G. Yang, C. Zhang, T. Pan: Mater. Sci. Forum, 2005, vol. 475-479, pp. 113-6.CrossRefGoogle Scholar
  34. 34.
    J.H. van der Merwe: J. Appl. Phys., 1963, vol. 34, pp. 117-22.CrossRefGoogle Scholar
  35. 35.
    N. Pan, B. Song, Q. Zhai, B. Wen: J. Chinese Rare Earth Soc., 2010, vol. 28, pp. 126-30.Google Scholar
  36. 36.
    A.R. Mills, G. Thewlis, J. A. Whiteman: Mater. Sci. Technol., 1987, vol. 3, pp. 1051-61.CrossRefGoogle Scholar
  37. 37.
    F.S. Galasso: Structure and properties of inorganic solids, 1st ed., Pergamon Press Ltd., Headington Hill Hall, Oxford, 1970, pp. 28–31.Google Scholar
  38. 38.
    S. Zhang, N. Hattori, M. Enomoto, T. Tarui: ISIJ Int., 1996, vol. 36, pp. 1301-9.CrossRefGoogle Scholar
  39. 39.
    Y. O. Ciftci, Y. Ünlü, K. Colakoglu, E. Deligoz: Phys. Scr. 2009, vol. 80, pp. 1-6CrossRefGoogle Scholar
  40. 40.
    M. Fukuhara, A. Sanpei: ISIJ Int., 1993, vol. 33, pp. 508-12.CrossRefGoogle Scholar
  41. 41.
    A.J. Perry: Thin Solid Films, 1990, vol. 193-194, pp. 463-71.CrossRefGoogle Scholar
  42. 42.
    J.M. Howe: Interfaces in Materials, Wiley, New York, 1997, p. 378.Google Scholar
  43. 43.
    D.A. Porter and K.E. Easterling: Phase Formation in Metals and Alloys, 2nd ed., Chapman & Hall, Boundary Row, London, 1992, pp. 263–75.Google Scholar
  44. 44.
    D. Kim, K. Han, B. Lee, I. Han, J. H. Park and C. Lee: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2046-54.CrossRefGoogle Scholar
  45. 45.
    H. Homma, S. Ohkita, S. Matsuda, and K. Yamamoto: Weld. J., 1987, vol. 66, pp. 301-02Google Scholar
  46. 46.
    J.-L. Lee and Y.-T. Pan: Mater. Sci. Technol., 1992, vol. 8, pp. 236-44.CrossRefGoogle Scholar
  47. 47.
    J.-L. Lee and Y.-T. Pan: Metall. Trans. A, 1993, vol. 24A, pp. 1399-408.CrossRefGoogle Scholar
  48. 48.
    J.-L. Lee: Acta Metall. Mater., 1994, vol. 42, pp. 3291-8.CrossRefGoogle Scholar
  49. 49.
    J.M. Gregg, H.K.D.H. Bhadeshia: Acta Mater., 1997, vol. 43, pp. 739-48.CrossRefGoogle Scholar
  50. 50.
    J.M. Gregg, H.K.D.H. Bhadeshia: Metal. Mater. Trans. A, 1994, vol. 25A, pp. 1603-11.CrossRefGoogle Scholar
  51. 51.
    A. Takada, Y. Komizo, H. Terasaki, T. Yokota, K. Oi, K. Yasuda: Weld. Int., 2015, vol. 29, pp. 254-61.CrossRefGoogle Scholar
  52. 52.
    Ø. Grong, A.O. Kluken, H.K. Nylund, A.L. Dons, J. Hjelen: Metal. Mater. Trans. A, 1995, vol. 26A, pp. 525-34.CrossRefGoogle Scholar
  53. 53.
    R. Ricks, P. R. Howell and G. S. Barritte: J. Mater. Sci., 1982, vol. 17, pp. 732-40.CrossRefGoogle Scholar
  54. 54.
    J.-S. Byun, J.-H. Shim, Y. W. Cho and D. N. Lee: Acta Mater., 2003, vol. 51, pp. 1593-606.CrossRefGoogle Scholar
  55. 55.
    S. Liu and D.L. Olson: Weld. J., 1986, vol. 65, 139-49Google Scholar
  56. 56.
    Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, K. Okamoto: ISIJ Int. 1994, vol. 34, pp. 829-35.CrossRefGoogle Scholar
  57. 57.
    P. Harrison and R. Farrar: Metal Constr., 1987, vol. 19, pp. 392-9.Google Scholar
  58. 58.
    N. Mori, H. Homma, S. Okita, M. Wakabayashi: Mechanism of notch toughness improvement in Ti-B bearing welds metals, IIW Doc. IX-1196-81, International Institute of Welding, 1981, pp. 1–16.Google Scholar
  59. 59.
    A.S. Podder, A.S. Pandit, A. Murugaiyan, D. Bhattacharjee, R.K. Ray: Ironmaking Steelmaking, 2007, vol. 34, pp. 83–8.CrossRefGoogle Scholar
  60. 60.
    W. Mu, H. Shibata, P. Hedström, P. G. Jönsson and K. Nakajima: Steel Research Int., 2016, vol. 87, pp. 10-6.CrossRefGoogle Scholar
  61. 61.
    S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki: Acta Mater., 2003, vol. 51, pp. 1789-99.CrossRefGoogle Scholar
  62. 62.
    H. Kitahara, R. Ueji, N. Tsuji and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279-88.CrossRefGoogle Scholar
  63. 63.
    Z. Hou, P. Hedström, Y. Xu, D. Wu and J. Odqvist: ISIJ Int., 2014, vol. 54, pp. 2649-56.CrossRefGoogle Scholar
  64. 64.
    T. Maki, K. Tsuzaki and I. Tamura: Trans. Iron Steel Inst. Jpn., 1980, vol. 20, pp. 207-14.Google Scholar
  65. 65.
    S. Morito, H. Saito, T. Ogawa, T. Furuhara and T. Maki: ISIJ Int., 2005, vol. 45, pp. 91-4.CrossRefGoogle Scholar
  66. 66.
    H. Terasaki and Y. Komizo: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2683-9.CrossRefGoogle Scholar
  67. 67.
    T. Song and B. C. de Cooman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1686-705.CrossRefGoogle Scholar
  68. 68.
    P. Kolmskog, A. Borgenstam, M. Hillert, P. Hedström, S. S. Babu, H. Terasaki, and Y. Komizo: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4984-8.CrossRefGoogle Scholar
  69. 69.
    N.A. Gjostein, H.A. Domian, H.I. Aaronson, E. Eichen: Acta Mater., 1966, vol. 14: pp. 1637-44.CrossRefGoogle Scholar
  70. 70.
    L.H. Van Vlack: Trans AIME, 1951, vol. 191, pp. 251–59.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Wangzhong Mu
    • 1
    • 2
  • Hiroyuki Shibata
    • 3
  • Peter Hedström
    • 1
  • Pär Göran Jönsson
    • 1
  • Keiji Nakajima
    • 1
  1. 1.Department of Materials Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden
  2. 2.Department of Materials Science and Engineering, McMaster Steel Research CenterMcMaster UniversityHamiltonCanada
  3. 3.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations