Advertisement

Metallurgical and Materials Transactions B

, Volume 47, Issue 3, pp 2048–2062 | Cite as

Microstructure and Residual Stress Distributions Under the Influence of Welding Speed in Friction Stir Welded 2024 Aluminum Alloy

  • Danial Ghahremani Moghadam
  • Khalil Farhangdoost
  • Reza Masoudi Nejad
Article

Abstract

Friction stir welding was conducted on 8-mm-thick plates made of AA2024-T351 aluminum alloy at tool traverse speeds between 8 and 31.5 mm/minutes and tool rotational speed between 400 and 800 rpm. Metallographic analyses and mechanical tests including hardness, tensile, residual stress, and fracture toughness tests were carried out to evaluate the microstructural and mechanical properties of the joints as a function of the process parameters. The finite element simulation of the FSW process was also performed using a thermal model. The hardness test results show that the increase in rotational speed or decrease in traverse speed of the tool would cause a decrease in weld zone hardness. The best tensile properties are obtained at rotational/traverse speed ratio between 20 and 32. Also, the longitudinal residual stress profiles were evaluated by employing X-ray diffraction method. The numerical and experimental results showed that the increase in a traverse or rotational speed would increase the residual stress of the weld zone. From the fracture toughness results, it was found that the welding process decreases the joints fracture toughness 18 to 49 pct with respect to the base metal.

Keywords

Welding Residual Stress Fracture Toughness Friction Stir Welding Welding Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    [1] G. D’Urso, C. Giardini, S. Lorenzi, and T. Pastore, Journal of Materials Processing Technology, vol. 214, pp. 2075-2084, 2014.CrossRefGoogle Scholar
  2. 2.
    [2] Z. Zhang, B. L. Xiao, and Z. Y. Ma, Journal of Materials Science, vol. 47, pp. 4075-4086, 2012.CrossRefGoogle Scholar
  3. 3.
    [3] A. Cirello, G. Buffa, L. Fratini, and S. Pasta, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 220, pp. 805-811, 2006.CrossRefGoogle Scholar
  4. 4.
    [4] I. Radisavljevic, A. Zivkovic, N. Radovic, and V. Grabulov, Transactions of Nonferrous Metals Society of China, vol. 23, pp. 3525-3539, 2013.CrossRefGoogle Scholar
  5. 5.
    L. Dubourg, M. Jahazi, F. Gagnon, F. Nadeau, and L. St-Georges: Proceedings of the 6th International Symposium on Friction StirWelding, Saint Sauveur, Quebec, 2006.Google Scholar
  6. 6.
    [6] M. Peel, A. Steuwer, M. Preuss, and P. J. Withers, Acta Materialia, vol. 51, pp. 4791-4801, 2003.CrossRefGoogle Scholar
  7. 7.
    [7] L. Fratini and B. Zuccarello, International Journal of Machine Tools and Manufacture, vol. 46, pp. 611-619, 2006.CrossRefGoogle Scholar
  8. 8.
    [8] W. Xu, J. Liu, and H. Zhu, Materials & Design, vol. 32, pp. 2000-2005, 2011.CrossRefGoogle Scholar
  9. 9.
    [9] X. X. Zhang, D. R. Ni, B. L. Xiao, H. Andrä, W. M. Gan, M. Hofmann, et al., Acta Materialia, vol. 87, pp. 161-173, 2015.CrossRefGoogle Scholar
  10. 10.
    10.R. MasoudiNejad, K Farhangdoost, M. Shariati, Engineering Failure Analysis, 52: 75-89, 2015.CrossRefGoogle Scholar
  11. 11.
    11.RM Nejad, M. Shariati, K. Farhangdoost, Tribology International, vol. 94, pp. 118-125, 2016.CrossRefGoogle Scholar
  12. 12.
    [12] Z. Zhang and H. W. Zhang, The International Journal of Advanced Manufacturing Technology, vol. 37, pp. 279-293, 2008.CrossRefGoogle Scholar
  13. 13.
    [13] Z. Zhang and H. W. Zhang, Journal of Materials Processing Technology, vol. 209, pp. 241-270, 2009.CrossRefGoogle Scholar
  14. 14.
    [14] Z. Zhang and H. W. Zhang, Materials & Design, vol. 30, pp. 900-907, 2009.CrossRefGoogle Scholar
  15. 15.
    [15] M. Grujicic, T. He, G. Arakere, H. V. Yalavarthy, C.-F. Yen, and B. A. Cheeseman, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 224, pp. 609-625, 2010.CrossRefGoogle Scholar
  16. 16.
    [16] M. K. Kulekci, I. Sevim, and U. Esme, Journal of Materials Engineering and Performance, vol. 21, pp. 1260-1265, 2012.CrossRefGoogle Scholar
  17. 17.
    [17] M. A. Sutton, A. P. Reynolds, B. Yang, and R. Taylor, Materials Science and Engineering: A, vol. 354, pp. 6-16, 2003.CrossRefGoogle Scholar
  18. 18.
    18.H. JamshidiAval, S. Serajzadeh, and A. H. Kokabi, Journal of Materials Science, vol. 46, pp. 3258-3268, 2011.CrossRefGoogle Scholar
  19. 19.
    [19] T. Chen, Journal of Materials Science, vol. 44, pp. 2573-2580, 2009.CrossRefGoogle Scholar
  20. 20.
    [20] M. Akbari, R. A. Behnagh, and A. Dadvand, Science and Technology of Welding and Joining, vol. 17, pp. 581-588, 2012.CrossRefGoogle Scholar
  21. 21.
    [21] H. Su, C. S. Wu, A. Pittner, and M. Rethmeier, Journal of Manufacturing Processes, vol. 15, pp. 495-500, 2013.CrossRefGoogle Scholar
  22. 22.
    ASTM: E3-01, Standard Guide for Preparation of Metallographic Specimens, ASTM International, West Conshohecken, PA, 2001.Google Scholar
  23. 23.
    ASTM: E384, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohecken, PA, 2008.Google Scholar
  24. 24.
    ASTM: E 8M, Standard Test Methods for Tension Testing of Metallic Materials [metric], ASTM International, West Conshohecken, PA, 2001.Google Scholar
  25. 25.
    [25] C. Balasingh and A. Singh, Metals materials and Processes, vol. 12, pp. 269-280, 2000.Google Scholar
  26. 26.
    26.P. S. Prevey, X-ray diffraction residual stress techniques, ASM International ASM Handbook, New York, 1986, 10: 380-392.Google Scholar
  27. 27.
    ASTM: E1290, Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement, ASTM International, West Conshohecken, PA, 2008.Google Scholar
  28. 28.
    ASTM: E399, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials, ASTM International, West Conshohecken, PA, 2012.Google Scholar
  29. 29.
    [29] H. Schmidt and J. Hattel, Science and Technology of Welding and Joining, vol. 10, pp. 176-186, 2005.CrossRefGoogle Scholar
  30. 30.
    G.R. Johnson and W.H. Cook: Proceedings of the 7th International Symposium on Ballistics, 1983, pp. 541–547.Google Scholar
  31. 31.
    [31] C. M. Chen and R. Kovacevic, International Journal of Machine Tools and Manufacture, vol. 43, pp. 1319-1326, 2003.CrossRefGoogle Scholar
  32. 32.
    [32] D. R. Lesuer, “EXPERIMENTAL INVESTIGATIONS OF MATERIAL MODELS FOR TI-6A1-4V TITANIUM AND 2024-T3 ALUMINUM,” Springfield, Virginia, 2000.Google Scholar
  33. 33.
    [33] D. Trimble, G. E. O’Donnell, and J. Monaghan, Journal of Manufacturing Processes, vol. 17, pp. 141-150, 2015.CrossRefGoogle Scholar
  34. 34.
    [34] R. S. Mishra and Z. Y. Ma, Materials Science and Engineering: R: Reports, vol. 50, pp. 1-78, 2005.CrossRefGoogle Scholar
  35. 35.
    [35] J. H. Ouyang and R. Kovacevic, Journal of Materials Engineering and Performance, vol. 11, pp. 51-63, 2002.CrossRefGoogle Scholar
  36. 36.
    [36] H. Aydın, A. Bayram, A. Uğuz, and K. S. Akay, Materials & Design, vol. 30, pp. 2211-2221, 2009.CrossRefGoogle Scholar
  37. 37.
    [37] T. W. Nelson, R. J. Steel, and W. J. Arbegast, Science and Technology of Welding and Joining, vol. 8, pp. 283-288, 2003.CrossRefGoogle Scholar
  38. 38.
    [38] C. Leitão, R. Louro, and D. M. Rodrigues, Materials & Design, vol. 37, pp. 402-409, 2012.CrossRefGoogle Scholar
  39. 39.
    [39] Z. Y. Ma, R. S. Mishra, and M. W. Mahoney, Acta Materialia, vol. 50, pp. 4419-4430, 2002.CrossRefGoogle Scholar
  40. 40.
    [40] S. Wei, C. Hao, and J. Chen, Materials Science and Engineering: A, vol. 452–453, pp. 170-177, 2007.CrossRefGoogle Scholar
  41. 41.
    [41] V. Balasubramanian, Materials Science and Engineering: A, vol. 480, pp. 397-403, 2008.CrossRefGoogle Scholar
  42. 42.
    [42] J. A. Al-Jarrah, S. Swalha, T. A. Mansour, M. Ibrahim, M. Al-Rashdan, and D. A. Al-Qahsi, Materials & Design, vol. 56, pp. 929-936, 2014.CrossRefGoogle Scholar
  43. 43.
    [43] S. Rajakumar, C. Muralidharan, and V. Balasubramanian, Materials & Design, vol. 32, pp. 535-549, 2011.CrossRefGoogle Scholar
  44. 44.
    44.W. F. Smith, in Structure and Properties of Engineering Materials. New York: McGraw-Hill, 1993, pp. 198-203Google Scholar
  45. 45.
    [46] C. A. Charitidis, D. A. Dragatogiannis, E. P. Koumoulos, and I. A. Kartsonakis, Materials Science and Engineering: A, vol. 540, pp. 226-234, 2012.CrossRefGoogle Scholar
  46. 46.
    [47] H. Lombard, D. G. Hattingh, A. Steuwer, and M. N. James, Materials Science and Engineering: A, vol. 501, pp. 119-124, 2009.CrossRefGoogle Scholar
  47. 47.
    [48] H. Lombard, D. G. Hattingh, A. Steuwer, and M. N. James, Engineering Fracture Mechanics, vol. 75, pp. 341-354, 2008.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Danial Ghahremani Moghadam
    • 1
  • Khalil Farhangdoost
    • 1
  • Reza Masoudi Nejad
    • 1
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations