Metallurgical and Materials Transactions B

, Volume 47, Issue 3, pp 1553–1564 | Cite as

Computation of Phase Fractions in Austenite Transformation with the Dilation Curve for Various Cooling Regimens in Continuous Casting

  • Zhihua Dong
  • Dengfu Chen
  • Mujun Long
  • Wei Li
  • Huabiao Chen
  • Levente Vitos
Article
  • 211 Downloads

Abstract

A concise model is applied to compute the microstructure evolution of austenite transformation by using the dilation curve of continuously cast steels. The model is verified by thermodynamic calculations and microstructure examinations. When applying the model, the phase fractions and the corresponding transforming rates during austenite transformation are investigated at various cooling rates and chemical compositions. In addition, ab initio calculations are performed for paramagnetic body-centered-cubic Fe to understand the thermal expansion behavior of steels at an atomic scale. Results indicate that by increasing the cooling rate, the final volume fraction of ferrite/pearlite will gradually increase/decrease with a greater transforming rate of ferrite. The ferrite fraction increases after austenite transformation with lowering of the carbon content and increasing of the substitutional alloying fractions. In the austenite transformation, the thermal expansion coefficient is sequentially determined by the forming rate of ferrite and pearlite. According to the ab initio theoretical calculations for the single phase of ferrite, thermal expansion emerges from magnetic evolution and lattice vibration, the latter playing the dominant role. The theoretical predictions for volume and thermal expansion coefficient are in good agreement with the experimental data.

References

  1. 1.
    M.J. Long, Z.H. Dong, J.H. Sheng, D.F. Chen, and C.M. Chen: Steel Res. Int., 2015, vol. 86, pp. 154-62.CrossRefGoogle Scholar
  2. 2.
    B. Mintz: Mater. Sci. Tech.-Lond., 2008, vol. 24, pp. 112-20.CrossRefGoogle Scholar
  3. 3.
    B. Mintz: ISIJ Int., 1999, vol. 39, pp. 833-55.CrossRefGoogle Scholar
  4. 4.
    K.M. Banks, A. Tuling, and B. Mintz: Mater. Sci. Tech.-Lond., 2012, vol. 28, pp. 536-42.CrossRefGoogle Scholar
  5. 5.
    B. Mintz and A. Cowley: Mater. Sci. Tech.-Lond., 2006, vol. 22, pp. 279-92.CrossRefGoogle Scholar
  6. 6.
    M.R. Allazadeh: Ph.D. Dissertation, University of Pittsburgh, Pittsburgh, PA, 2009.Google Scholar
  7. 7.
    M.R. Allazadeh and C.I. Garcia: Iron. Steel., 2011, vol. 38, pp. 566-76.CrossRefGoogle Scholar
  8. 8.
    M.R. Allazadeh: Steel Grips, 2010, vol. 8, pp. 285-9.Google Scholar
  9. 9.
    D.J. Mun, E.J. Shin, Y.W. Choi, J.S. Lee, and Y.M. Koo: Mat. Sci. Eng. a-Struct., 2012, vol. 545, pp. 214-24.CrossRefGoogle Scholar
  10. 10.
    A. Yamanaka, T. Takaki, and Y. Tomita: ISIJ Int., 2012, vol. 52, pp. 659-68.CrossRefGoogle Scholar
  11. 11.
    D.J. Wang, Y.C. Liu, and Y.H. Zhang: J. Mater. Sci., 2008, vol. 43, pp. 4876-85.CrossRefGoogle Scholar
  12. 12.
    S.J. Jones and H.K.D.H. Bhadeshia: Acta Mater., 1997, vol. 45, pp. 2911-20.CrossRefGoogle Scholar
  13. 13.
    F.G. Caballero, C. Capdevila, and C.G. de Andres: Mater. Sci. Tech.-Lond., 2002, vol. 18, pp. 534-40.CrossRefGoogle Scholar
  14. 14.
    M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima, G. Anan, and Y. Higo: ISIJ Int., 1992, vol. 32, pp. 306-15.CrossRefGoogle Scholar
  15. 15.
    T.T. Pham, E.B. Hawbolt, and J.K. Brimacombe: Metall. Mater. Trans. A, 1995, vol. 26, pp. 1993-2000.CrossRefGoogle Scholar
  16. 16.
    P.A. Manohar and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 766-74.CrossRefGoogle Scholar
  17. 17.
    M.C. Zhao, K. Yang, F.R. Xiao, and Y.Y. Shan: Mat. Sci. Eng. a-Struct., 2003, vol. 355, pp. 126-36.CrossRefGoogle Scholar
  18. 18.
    C.G. de Andres, F.G. Caballero, C. Capdevila, and L.F. Alvarez: Mater. Charact., 2002, vol. 48, pp. 101-11.CrossRefGoogle Scholar
  19. 19.
    X. Yuan, Z. Liu, S. Jiao, X. Liu, and G. Wang: ISIJ Int., 2007, vol. 47, pp. 1658-65.CrossRefGoogle Scholar
  20. 20.
    C.X. Liu, Y.C. Liu, D.T. Zhang, and Z.S. Yan: Appl. Phys. a-Mater., 2011, vol. 105, pp. 949-57.CrossRefGoogle Scholar
  21. 21.
    R. Petrov, L. Kestens, and Y. Houbaert: Mater. Charact., 2004, vol. 53, pp. 51-61.CrossRefGoogle Scholar
  22. 22.
    C.S. Oh, H.N. Han, C.G. Lee, T.H. Lee, and S.J. Kim: Met. Mater. Int., 2004, vol. 10, pp. 399-406.CrossRefGoogle Scholar
  23. 23.
    M.J. Long, D.F. Chen, L.F. Zhang, Y. Zhao, and Q. Liu: Metal. Int., 2011, vol. 16, pp. 19-33.Google Scholar
  24. 24.
    J.A. Zhang, D.F. Chen, S.G. Wang, and M.J. Long: Steel Res. Int., 2011, vol. 82, pp. 213-21.CrossRefGoogle Scholar
  25. 25.
    L. Vitos: Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications, Springer, London, U.K., 2007.Google Scholar
  26. 26.
    L. Vitos, H.L. Skriver, B. Johansson, and J. Kollár: Comp. Mater. Sci., 2000, vol. 18, pp. 24-38.CrossRefGoogle Scholar
  27. 27.
    J. Kollar, L. Vitos, and H.L. Skriver: Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method, H. Dreysse, ed., Springer, Berlin, 2000, p. 85.Google Scholar
  28. 28.
    L. Vitos, I.A. Abrikosov, and B. Johansson: Phys. Rev. Lett., 2001, vol. 87, p. 156401.CrossRefGoogle Scholar
  29. 29.
    P. Soven: Phys. Rev., 1967, vol. 156, pp. 809-13.CrossRefGoogle Scholar
  30. 30.
    J. Staunton, B.L. Gyorffy, A.J. Pindor, G.M. Stocks, and H. Winter: J. Magn. Magn. Mater., 1984, vol. 45, pp. 15-22.CrossRefGoogle Scholar
  31. 31.
    W. Kohn and L.J. Sham: Phys. Rev., 1965, vol. 140, pp. 1133-8.CrossRefGoogle Scholar
  32. 32.
    H. Levämäki, M.P.J. Punkkinen, K. Kokko, and L. Vitos: Phys. Rev. B, 2014, vol. 89, p. 115107.CrossRefGoogle Scholar
  33. 33.
    H. Levämäki, M.P.J. Punkkinen, K. Kokko, and L. Vitos: Phys. Rev. B, 2012, vol. 86, p. 201104.CrossRefGoogle Scholar
  34. 34.
    K. Kádas, L. Vitos, B. Johansson, and J. Kollár: Phys. Rev. B, 2007, vol. 75, p. 035132.CrossRefGoogle Scholar
  35. 35.
    V.L. Moruzzi, J.F. Janak, and K. Schwarz: Phys. Rev. B, 1988, vol. 37, pp. 790-9.CrossRefGoogle Scholar
  36. 36.
    H.L. Zhang, N. Al-Zoubi, B. Johansson, and L. Vitos: J. Appl. Phys., 2011, vol. 110, p. 073707.CrossRefGoogle Scholar
  37. 37.
    C.G. de Andres, F.G. Caballero, and C. Capdevila: Scripta Mater., 1998, vol. 38, pp. 1835-42.CrossRefGoogle Scholar
  38. 38.
    M.I. Onsoien, M.M. Hamdi, and A. Mo: Weld J., 2009, vol. 88, pp. 1S-6S.Google Scholar
  39. 39.
    F.G. Caballero, C. Capdevila, and C.G. De Andres: ISIJ Int., 2001, vol. 41, pp. 1093-102.CrossRefGoogle Scholar
  40. 40.
    F.G. Caballero, C. Capdevila, and C.G. De Andres: J. Mater. Sci., 2002, vol. 37, pp. 3533-40.CrossRefGoogle Scholar
  41. 41.
    M. Acet, H. Zahres, E.F. Wassermann, and W. Pepperhoff: Phys. Rev. B, 1994, vol. 49, pp. 6012-7.CrossRefGoogle Scholar
  42. 42.
    Z.S. Basinski, W. Hume-Rothery, and A.L. Sutton: Proc. Roy. Soc. A, 1955, vol. 229, pp. 459-67.CrossRefGoogle Scholar
  43. 43.
    W. Xiong: Ph.D. dissertation, KTH Royal Institute of Technology, Stockholm, Sweden, 2012.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Zhihua Dong
    • 1
    • 2
  • Dengfu Chen
    • 1
  • Mujun Long
    • 1
  • Wei Li
    • 2
  • Huabiao Chen
    • 1
  • Levente Vitos
    • 2
    • 3
    • 4
  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingP.R. China
  2. 2.Applied Materials Physics, Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden
  3. 3.Department of Physics and Astronomy, Division of Materials TheoryUppsala UniversityUppsalaSweden
  4. 4.Research Institute for Solid State Physics and OpticsWigner Research Center for PhysicsBudapestHungary

Personalised recommendations