Metallurgical and Materials Transactions B

, Volume 47, Issue 1, pp 522–536 | Cite as

Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field. Part II: Conventional Electromagnetic Levitation

  • Sergejs SpitansEmail author
  • Egbert Baake
  • Bernard Nacke
  • Andris Jakovics


By means of external coupling between electromagnetic (EM) problem in ANSYS and hydrodynamic problem in FLUENT, a numerical model for the liquid metal free surface flow in an alternate EM field has been developed and verified in the first part of the article. Volume of Fluid (VOF) algorithm has been used for tracking of free surface. In this work, improved performance of the model is presented. General validation of the VOF algorithm is performed by comparison of the calculated free oscillations of the liquid column to its analytical solution. The 3D/VOF calculation of coupled EM field and free surface flow with Large Eddy Simulation turbulence description for the first time is applied for modeling of conventional EM levitation. Calculation results are compared with 2D/VOF and 3D/VOF models that use less precise kε and kω SST turbulence formulations. Obtained time-averaged droplet shapes are used for single-phase flow calculations with different turbulence models and free-slip/no-slip velocity conditions at the fixed free surface for validation of the flow. Meanwhile, series of levitation melting experiments are performed for verification of the simulated droplet shapes. In conclusion, parameter impact on the fully developed flow and the levitated droplet shape is discussed.


Large Eddy Simulation Lorentz Force Shear Stress Transport Droplet Shape Large Eddy Simulation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the European Social Fund within the project “Support for Doctoral Studies at University of Latvia” No. 2009/0162/1DP/ The authors wish to acknowledge the German Research Association for supporting this study under the Grant No. BA 3565/3-2. The authors would like to thank Dr. Valdis Bojarevics for kindly sharing his simulation data of Okress et al. experiment within personal communication.

Supplementary material

Supplementary material 1 (MP4 4239 kb)

Supplementary material 2 (MP4 30282 kb)


  1. 1.
    Siemens & Halske A.G.: German patent 518499, 1931.Google Scholar
  2. 2.
    O. Muck: German patent 422004, 1923.Google Scholar
  3. 3.
    E. Okress, D. Wroughton, G. Comenetz, P. Brace, J. Kelly: J. Appl. Phys., 1952, vol. 23, pp. 545-552.CrossRefGoogle Scholar
  4. 4.
    J. W. S. Rayleigh: Proc. Royal Soc. London, 1879, vol. 29, pp. 71-79.CrossRefGoogle Scholar
  5. 5.
    I. Egry, G. Lohoefer, G. Jacobs: Phys. Rev. Lett., 1995, vol. 75(22), pp. 4043-4046.CrossRefGoogle Scholar
  6. 6.
    A. Bratz, I. Egry: J. Fluid Mech., 1995, vol. 298, pp. 341-359.CrossRefGoogle Scholar
  7. 7.
    D. L. Cummings, D. A. Blackburn: J. Fluid Mech., 1991, vol. 224, pp. 395-416.CrossRefGoogle Scholar
  8. 8.
    R. F. Brooks, A. P. Day: Int. J. Thermophys., 1999, vol. 20(4), pp. 1041-1050.CrossRefGoogle Scholar
  9. 9.
    H. Lamb: Hydrodynamics. Dover: New York, 1945.Google Scholar
  10. 10.
    L. M. Racz, I. Egry: Rev. Sci. Instrum., 1995, vol. 66(8), pp. 4254-4258.CrossRefGoogle Scholar
  11. 11.
    T. Richardsen, G. Lohoefer: Int. J. Thermophys., 1999, vol. 20(4), pp. 1029-1039.CrossRefGoogle Scholar
  12. 12.
    R. W. Hyers: Meas. Sci. Technol., 2005, vol. 16, pp. 394-401.CrossRefGoogle Scholar
  13. 13.
    Y. Takeda: Nuclear Technology, 1987, vol. 79, pp. 120-124.Google Scholar
  14. 14.
    R. Ricou, C. Vives: International Journal of Heat and Mass Transfer, 1982, vol. 25, pp. 1579-1588.CrossRefGoogle Scholar
  15. 15.
    M. Scepanskis, M. Sarma, R. Nikoluskins, K. Thomsen, A. Jakovics, P. Vontobel, T. Beinerts, A. Bojarevics, E. Platacis: Magnetohydrodynamics, 2015, vol. 51(2), pp. 257-266.Google Scholar
  16. 16.
    E.M. Schwartz: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995.Google Scholar
  17. 17.
    J-H. Zong, J. Szekely, E. Schwartz: IEEE Transactions on Magnetics, 1992, vol. 28(3), pp. 1833-1842.CrossRefGoogle Scholar
  18. 18.
    V. Bojarevics, K. Pericleous: ISIJ Int., 2003, vol. 43(6), pp. 890-898.CrossRefGoogle Scholar
  19. 19.
    K. Pericleous, V. Bojarevics, and A. Roy: Int. J. Microgravity. Sci. Appl., 2013, vol. 30(1), pp. 56–63.Google Scholar
  20. 20.
    C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang: Spectral Methods in Fluid Dynamics, Springer, Berlin, 1988, p. 567.CrossRefGoogle Scholar
  21. 21.
    D.C. Wilcox: Turbulence Modelling for CFD, DCW Industries, La Canada, CA, 1998, p. 540.Google Scholar
  22. 22.
    V. Bojarevics, K. Pericleous, M. Cross: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 179-189.CrossRefGoogle Scholar
  23. 23.
    S. Easter: Ph.D. Thesis, University of Greenwich, London, 2012.Google Scholar
  24. 24.
    B. Q. Li: Ann. N. Y. Acad. Sci., 2006, vol. 1077, pp. 1-32.CrossRefGoogle Scholar
  25. 25.
    X. Ai: Ph.D. Thesis, Washington State University, Pullman, WA, 2004.Google Scholar
  26. 26.
    B. Q. Li: Int. J. Eng. Sci., 1993, vol. 31(2), pp. 201-220.CrossRefGoogle Scholar
  27. 27.
    S. K. Lele: J. Comp. Phys., 1992, vol 103(1), pp. 16-42.CrossRefGoogle Scholar
  28. 28.
    H. Le, P. Moin: Int. J. Numer. Meth. Fl., 1991, vol. 92(2), 369-379.Google Scholar
  29. 29.
    R. W. Hyers, G. Trapaga, B. Abedian: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 29-36.CrossRefGoogle Scholar
  30. 30.
    S. R. Berry, R. W. Hyers, L. M. Racz, B. Abedian: Int. J. Thermophys., 2005, vol. 26(5), pp. 1565-1581.CrossRefGoogle Scholar
  31. 31.
    Team TEMPUS: Proc. IX Eur. Symp. On Gravity-Dependent Phenomena in Phys. Sci. Lecture Notes in Physics 464, 1996, Springer, New York, pp. 233–52.Google Scholar
  32. 32.
    C. W. Hirt, B. D. Nichols: J. Comp. Phys., 1981, vol. 39, pp. 201-225.CrossRefGoogle Scholar
  33. 33.
    P. Chapelle, A. Jardy, D. Ablitzer, Yu. M. Pomarin, G. M. Grigorenko: J. Mater. Sci., 2008, vol. 43, pp. 3001-3008.CrossRefGoogle Scholar
  34. 34.
    V. Bojarevics, K. Pericleous: Magnetohydrodynamics, 2001, vol. 37(1/2), pp. 93-102.Google Scholar
  35. 35.
    S. Spitans, A. Jakovics, E. Baake, B. Nacke: Metall. Mater. Trans. B, 2013, vol. 44B(3), pp. 593-605.CrossRefGoogle Scholar
  36. 36.
    E. Baake: Dr.-Ing. Thesis., Leibniz University, Dusseldorf, 1994.Google Scholar
  37. 37.
    M. Kirpo. Ph.D. Thesis, University of Latvia, Riga, 2008.Google Scholar
  38. 38.
    V. Bojarevics, A. Roy, K. Pericleous: Magnetohydrodynamics, 2010, vol. 46(4), pp. 317-329.Google Scholar
  39. 39.
    O. Pesteanu, E. Baake: ISIJ International, 2011, Vol. 51(5), pp. 707-721.CrossRefGoogle Scholar
  40. 40.
    S. Spitans, E. Baake, B. Nacke, A. Jakovics: Magnetohydrodynamics, 2015, vol. 51(1), pp. 121-132.Google Scholar
  41. 41.
    C. Bullard, R. W. Hyers, B. Abedian: IEEE T. Magn., 2005, vol. 41(7), pp. 2230-2235.CrossRefGoogle Scholar
  42. 42.
    J. Priede and G. Gerberth: J. Appl. Phys., 2006, vol. 100, p. 911.CrossRefGoogle Scholar
  43. 43.
    V. Shatrov, J. Priede, G. Gerberth: Phys. Fluids, 2007, vol. 19, 078106.CrossRefGoogle Scholar
  44. 44.
    S. Spitans, E. Baake, B. Nacke, A. Jakovics: Magnetohydrodynamics, 2015, vol. 51(3), pp. 567-578.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Sergejs Spitans
    • 1
    • 2
    Email author
  • Egbert Baake
    • 1
  • Bernard Nacke
    • 1
  • Andris Jakovics
    • 2
  1. 1.Institute of ElectrotechnologyLeibniz University of HannoverHannoverGermany
  2. 2.Laboratory for Mathematical Modelling of Environmental and Technological ProcessesUniversity of LatviaRigaLatvia

Personalised recommendations