Metallurgical and Materials Transactions B

, Volume 47, Issue 1, pp 666–674 | Cite as

Decomposition Kinetics of Titania Slag in Eutectic NaOH-NaNO3 System

  • Dong Wang
  • Zhi Wang
  • Tao QiEmail author
  • Lina Wang
  • Tianyan Xue


The decomposition kinetics and mechanism of titania slag in eutectic NaOH-NaNO3 system were studied in the temperature range 623 K to 723 K (350 °C to 450 °C). Decomposed products were examined using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. It has been identified that the main product is Na2TiO3 and the decomposition kinetics of titania slag followed a shrinking unreacted core model. It is proposed that the chemical reaction process was the rate determining step with apparent activation energy of 62.4 kJ/mol. NaNO3 was mainly acted as oxygen carrier and mass transport agent to lower the viscosity of the system. The purity of TiO2 obtained in the product was up to 99.3 pct. A flow diagram to produce TiO2 and to recycle the media was proposed.


NaNO3 Apparent Activation Energy Glassy Phase Particle Size Fraction Titanium Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge supports from the project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 51090380), the National Basic Research Program of China (973 Program, Grant Nos. 2013CB632604, 2013CB632601), National Science Foundation for Distinguished Young Scholars of China (Grant No. 51125018), and National Natural Science Foundation of China (Grant Nos. 51374191, 51104139).


  1. 1.
    G. Chen, J.H. Peng and J. Chen: Miner. Metall. Process., 2011, vol. 28, pp. 44-48.Google Scholar
  2. 2.
    J. B. Rosebaum: J. Metals, 1982, vol. 18, pp. 713.Google Scholar
  3. 3.
    Z.H. Chen and C.H. Liu: Manufacture and Application Technology of Titanium Dioxide Pigment, 1st ed., Chemical Industry Press, Beijing, 2006 (in Chinese).Google Scholar
  4. 4.
    J. Gambogi: USGS Mineral Commodities Summary Report, U.S. Geological Survey, pp. 172, 2010, Washington, DC.Google Scholar
  5. 5.
    S. Yuan, W, Chen and S. Hu: Mater. Sci. Eng. C, 2005, vol. 25, pp. 479-85.CrossRefGoogle Scholar
  6. 6.
    T. Nenova and Z. Nenova: Ceram. Int., 2004, vol. 39, pp. 4465–73.CrossRefGoogle Scholar
  7. 7.
    B. Liang, C. Li, C. Zhang, Y. and Y. Zhang: Hydrometallurgy, 2005, vol. 76, pp. 173-79.CrossRefGoogle Scholar
  8. 8.
    J. Barksdale (1966) Titanium: Its Occurrence, Chemistry, and Technology, Ronald Press Co, New York.Google Scholar
  9. 9.
    D.S. Chen, L.S. Zhao, Y.H. Liu, T. Qi, J.C. Wang and L. N. Wang: J. Hazard. Mater., 2013, vol. 244-245, pp. 588-95.CrossRefGoogle Scholar
  10. 10.
    J. Winkler (2003) Titanium Dioxide. Vincentz Network, Germany.Google Scholar
  11. 11.
    W. Zhang, Z. W. Zhu and C. Y. Cheng: Hydrometallurgy, 2011, vol. 108, pp. 177-188.CrossRefGoogle Scholar
  12. 12.
    S. Middlemas, Z. Z. Fang and P. Fan: Hydrometallurgy, 2013, vol. 131-132, pp. 107-113.CrossRefGoogle Scholar
  13. 13.
    P. C. Pistorius, P.C: J. Metall., 2002, vol. 31(2), pp. 120-125.Google Scholar
  14. 14.
    K. Zhang, X. W. Lv, R. Huang, B. Song, and F.Xi: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 923-928.CrossRefGoogle Scholar
  15. 15.
    J. B. Zhang, G. Y Zhang, Q. S. Zhu, C. Lei, Z. H. Xie and H. Z. Li: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 914-922.CrossRefGoogle Scholar
  16. 16.
    A. A. Nayl, I. M. Ismail and H. F. Aly: Hydrometallurgy, 2009, vol. 98, pp. 196-200.CrossRefGoogle Scholar
  17. 17.
    T. Y. Xue, L. N. Wang, T. Qi, J. L. Chu, J. K. Qu and C. H. Liu: Hydrometallurgy, 2009, vol. 95, pp. 22-27.CrossRefGoogle Scholar
  18. 18.
    Y. Feng, J. G. Wang, L. N. Wang, T. Qi, Xue, T. Y. and J. L. Chu: Rare Metals, 2009, vol. 28, pp. 564-569.CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, S.L. Zheng, H.B. Xu, H. Du and Y. Zhang: Int. J. Miner. Process., 2010, vol. 95, pp. 10-17.CrossRefGoogle Scholar
  20. 20.
    B. Liu, H. Du, S.N. Wang, Y. Zhang, S.L. Zheng, L.J. Li and D. H. Chen: AIChE J, 2012, 59(2), 541–52.CrossRefGoogle Scholar
  21. 21.
    D. Wang, J. L. Chu, Y. H. J. Liu, Li,; T. Y. Xue, W. J. Wang and T. Qi: Ind. Eng. Chem. Res., 2013, vol. 52(45), pp. 15756-15761CrossRefGoogle Scholar
  22. 22.
    P. C. Pistorius and C. Coetzee: Metall. Mater. Trans. B, 2003, vol. 34, pp. 581-588.CrossRefGoogle Scholar
  23. 23.
    O. Abe, T. Utsunomiya and Y. Hoshino: Thermochim. Acta, 1984, vol. 74, pp. 131-141.CrossRefGoogle Scholar
  24. 24.
    O. Abe, T. Utsunomiya and Y. Hoshino: Thermochim. Acta, 1984, vol. 78, pp. 251-260.CrossRefGoogle Scholar
  25. 25.
    D. Duan and Z. Qiao: Molten Salt Chemistry. Metall Eng Press, China, 1993.Google Scholar
  26. 26.
    V. Villard, H. Lefebvre, D. Ferry and G. Picard: Electrochim. Acta, 1988, vol. 33, pp. 545-549.CrossRefGoogle Scholar
  27. 27.
    G. Moutiers, M. Cassir and J. Devynck: Chem. Int. Electrochem., 1991, vol. 315, pp. 103-112.Google Scholar
  28. 28.
    S. Ahmad, M. A. Rhamdhani, M. I. Pownceby and W. J. Bruckard: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 557-67.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Dong Wang
    • 1
    • 2
  • Zhi Wang
    • 1
    • 2
  • Tao Qi
    • 1
    • 2
    Email author
  • Lina Wang
    • 1
    • 2
  • Tianyan Xue
    • 1
    • 2
  1. 1.Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations