Advertisement

Metallurgical and Materials Transactions B

, Volume 46, Issue 5, pp 2224–2233 | Cite as

Aluminum Deoxidation Equilibria in Liquid Iron: Part II. Thermodynamic Modeling

  • Min-Kyu Paek
  • Jong-Jin Pak
  • Youn-Bae KangEmail author
Article

Abstract

Al deoxidation equilibria in liquid iron over the whole composition range from very low Al ([pct Al] = 0.0027) to almost pure liquid Al were thermodynamically modeled for the first time using the Modified Quasichemical Model in the pair approximation for the liquid phase. The present modeling is distinguished from previous approaches in many ways. First, very strong attractions between metallic components, Fe and Al, and non-metallic component, O, were taken into account explicitly in terms of Short-Range Ordering. Second, the present thermodynamic modeling does not distinguish solvent and solutes among metallic components, and the model calculation can be applied from pure liquid Fe to pure liquid Al. Therefore, this approach is thermodynamically self-consistent, contrary to the previous approaches using interaction parameter formalism. Third, the present thermodynamic modeling describes an integral Gibbs energy of the liquid alloy in the framework of CALPHAD; therefore, it can be further used to develop a multicomponent thermodynamic database for liquid steel. Fourth, only a small temperature-independent parameter for ternary liquid was enough to account for the Al deoxidation over wide concentration (0.0027 < [pct Al] < 100) and wide temperature range [1823 K to 2139 K (1550 °C to 1866 °C)]. Gibbs energies of Fe-O and Al-O binary liquid solutions at metal-rich region (up to oxide saturation) were modeled, and relevant model parameters were optimized. By merging these Gibbs energy descriptions with that of Fe-Al binary liquid modeled by the same modeling approach, the Gibbs energy of ternary Fe-Al-O solution at metal-rich region was obtained along with one small ternary parameter. It was shown that the present model successfully reproduced all available experimental data for the Al deoxidation equilibria. Limit of previously used interaction parameter formalism at high Al concentration is discussed.

Keywords

Liquid Alloy Liquid Iron Optimize Model Parameter Ternary Parameter Pair Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

\( \Delta g_{ij} \)

Gibbs energy change for the formation of two moles of (ij) pairs (J/mol)

\( \Delta S^{\text{config}} \)

Configurational entropy of mixing (J/mol K)

[pct i]

Mass percent of i (–)

\( a_{i} \)

Raoultian activity of i (–)

\( e_{i}^{j} \)

Wagner’s first-order interaction parameter of j on i (–)

\( f_{i} \)

Henrian activity coefficient of i in mass pct scale (–)

\( g_{i}^{^\circ } \)

Molar Gibbs energy of pure component i (J/mol)

\( h_{i} \)

Henrian activity of i in mass pct scale (–)

K

The equilibrium constant (–)

\( n_{i} \)

Number of moles of i (mol)

\( n_{ij} \)

Number of moles of (ij) pairs (mol)

R

Gas constant (8.314 J/mol K)

\( r_{i}^{j} \)

Wagner’s second-order interaction parameter of j on i (–)

T

Absolute temperature (K)

\( X_{i} \)

Mole fraction of i (–)

\( X_{ij} \)

Pair fraction of (ij) pairs (–)

\( Y_{i} \)

Coordination-equivalent fraction of i (–)

\( Z_{i} \)

Coordination number of i (–)

\( Z_{ij}^{i} \)

Coordination number of i in ij binary solution when all nearest neighbors of an i are j’s

\( \kappa \)

Holcomb and Pierre’s model parameter for the exponential function,[63] (–)

MQM

Modified Quasichemical Model

SRO

Short-Range Ordering

CALPHAD

CALculation of PHAse Diagram

WIPF

Wagner’s Interaction Parameter Formalism

JSPS

Japan Society for the Promotion of Science

UIPF

Unified Interaction Parameter Formalism

FNN

First-Nearest Neighbor

EMF

Electro Motive Force

Notes

Acknowledgment

This study was supported by a Grant (NRF-2013K2A2A2000634) funded by the National Research Foundation of Korea, Republic of Korea.

References

  1. 1.
    L. E. Rohde, A. Choudhury, and M. Wahlster: Arch. Eisenhüttenwes., 1971, vol. 42, pp. 165-74.Google Scholar
  2. 2.
    C. Wagner: Thermodynamics of Alloys, Addision-Wesley Press, Cambridge, MA, 1952, pp. 47-51.Google Scholar
  3. 3.
    The 19th Committee in Steelmaking: Thermodynamic Data For Steelmaking, The Japan Society for Promotion of Science, Tohoku University Press, Sendai, Japan, 2010, pp. 10–13.Google Scholar
  4. 4.
    R. J. Fruehan: Metall. Trans., 1970, vol. 1, pp, 3403-10.CrossRefGoogle Scholar
  5. 5.
    D. Janke and W. A. Fischer: Arch. Eisenhüttenwes., 1976, vol. 47, 195-8.Google Scholar
  6. 6.
    S. Dimitrov, A. Weyl, and D. Janke: Steel Res., 1995, vol. 66, pp. 3-7.Google Scholar
  7. 7.
    J. D. Seo, S.H. Kim, and K.R. Lee: Steel Res., 1998, vol. 69, pp. 49-53.Google Scholar
  8. 8.
    J. H. Swisher: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 123-124.Google Scholar
  9. 9.
    Y. J. Kang, M. Thunman, D. Sichen, T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 1483-9.CrossRefGoogle Scholar
  10. 10.
    V. E. Shevtsov: Russ. Metall., 1981, vol. 1, pp. 52-7.Google Scholar
  11. 11.
    H. Suito, H. Inoue, and R. Inoue: ISIJ Int., 1991, vol. 31, pp. 1381-8.CrossRefGoogle Scholar
  12. 12.
    L. S. Darken: Trans. AIME, 1967, vol. 239, pp. 80-89.Google Scholar
  13. 13.
    C. H. P. Lupis and J. F. Elliott: Acta Metall., 1960, vol. 14, pp. 529-38.CrossRefGoogle Scholar
  14. 14.
    A.D. Pelton: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 869-76.CrossRefGoogle Scholar
  15. 15.
    S. Srikanth and K. T. Jacob: Metall. Trans. B, 1988, vol. 19B, pp. 269-75.CrossRefGoogle Scholar
  16. 16.
    I. H. Jung, S. A. Decterov, and A. D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493-507.CrossRefGoogle Scholar
  17. 17.
    A. D. Pelton, S. A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651-9.CrossRefGoogle Scholar
  18. 18.
    A. D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1355-60.CrossRefGoogle Scholar
  19. 19.
    H. Herty and J. M. Gaines: Trans. AIME, 1928, vol. 80, pp. 142-56.Google Scholar
  20. 20.
    F. Korber: Stahl und Eisen, 1932, vol. 52, pp. 133-44.Google Scholar
  21. 21.
    J. Chipman and K. L. Fetters: Trans. American Soc. Met., 1941, vol. 29, pp. 953-67.Google Scholar
  22. 22.
    C. R. Taylor and J. Chipman: Trans. AIME, 1943, vol. 154, pp. 228-47.Google Scholar
  23. 23.
    P. A. Distin, S. G. Whiteway, and C. R. Masson: Canadian Metall. Quarterly, 1971, vol. 10, pp. 13-8.CrossRefGoogle Scholar
  24. 24.
    W. A. Fischer and J. F. Schumacher: Arch. Eisenhüttenwes., 1978, vol. 49, pp. 431-5.Google Scholar
  25. 25.
    M. Nduaguba and J. F. Elliott: Metall. Trans. B, 1983, vol. 14B, pp. 679-83.CrossRefGoogle Scholar
  26. 26.
    M. N. Dastur and J. Chipman: Metals Trans., 1949, vol. 185, pp. 441-5.Google Scholar
  27. 27.
    N. A. Gokcen: Trans. AIME, 1956, vol. 206, pp. 1558-67.Google Scholar
  28. 28.
    T. P. Floridis and J. Chipman: Trans. Metall. Soc. AIME, 1958, vol. 212, pp. 549-53.Google Scholar
  29. 29.
    H. Sakao and K. Sano: Trans. JIM, 1960, vol. 1, pp. 38-42.Google Scholar
  30. 30.
    E. S. Tankins, N. A. Gokcen, and G. R. Belton: Trans. Metall. Soc. AIME, 1967, vol. 230, pp. 820-7.Google Scholar
  31. 31.
    V. H. Schenck and E. Steinmetz: Arch. Eisenhüttenwes., 1967, vol. 38, pp. 813-9.Google Scholar
  32. 32.
    K. Schwerdtfeger: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1276-81.Google Scholar
  33. 33.
    M.K. Paek, J.M. Jang, Y.-B. Kang, and J.J. Pak: Metall. Mater. Trans. B, 2015. DOI: 10.1007/s11663-015-0368-0.
  34. 34.
    A. T. Phan, M. K. Paek, and Y. -B. Kang: Acta Mater., 2014, vol. 79, pp. 1-15.CrossRefGoogle Scholar
  35. 35.
    F. Wooley, J. F. Elliot: Trans. AIME, 1967, vol. 239, pp. 1872-83.Google Scholar
  36. 36.
    M. S. Petrushevsky, Yu. O. Esin, P. V. Gel’d, and V.M. Sandakov: Russ. Metall., 1972, vol. 6, pp. 149-53.Google Scholar
  37. 37.
    M.K. Paek, K.H. Do, Y.-B. Kang, I.H. Jung, and J.J. Pak: unpublished research, 2015.Google Scholar
  38. 38.
    C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. -B. Kang, J. Melançon, A. D. Pelton, C. Robelin, and S. Petersen: CALPHAD, 2009, vol. 33, pp. 295-311.CrossRefGoogle Scholar
  39. 39.
    A. D. Pelton and Y. -B. Kang: Int. J. Mater. Res., 2007, vol. 98, pp. 907-17.CrossRefGoogle Scholar
  40. 40.
    Y. -B. Kang and A. D. Pelton: CALPHAD, 2010, vol. 34, 180-88.CrossRefGoogle Scholar
  41. 41.
    A. T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317-425.CrossRefGoogle Scholar
  42. 42.
    G. Eriksson and A. D. Pelton: Metall. Trans. B, 1993, vol. 24B, pp. 807-16.CrossRefGoogle Scholar
  43. 43.
    S. A. Decterov, E. Jak, P. C. Hayes, and A. D. Pelton: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 643-57.CrossRefGoogle Scholar
  44. 44.
    H. A. Wriedt: Bulletin of Alloy Phase Diagrams, 1985, vol. 6, pp. 548-53.CrossRefGoogle Scholar
  45. 45.
    S. Otsuka and Z. Kozuka: J. Jpn. Inst. Met., 1981, vol. 22, pp. 558.CrossRefGoogle Scholar
  46. 46.
    J. R. Taylor, A. T. Dinsdale, M. Hillert, and M. Selleby: CALPHAD, 1992, vol. 16, pp. 173-9.CrossRefGoogle Scholar
  47. 47.
    K. Fitzner: Thermochemica Acta, 1982, vol. 52, pp. 103-11.CrossRefGoogle Scholar
  48. 48.
    M. W. Chase Jr: NIST-JANAF Thermochemical Tables, AIP, Woodbury, NY, 1998.Google Scholar
  49. 49.
    M. Seiersten: in COST 507: Thermochemical Database for Light Metal Alloy, 1998, vol. 2.Google Scholar
  50. 50.
    B. Sundman, I. Ohnuma, N. Dupin, U. R. Kattner, and S. G. Fries: Acta Mater., 2009, vol. 57, pp. 2896-908.CrossRefGoogle Scholar
  51. 51.
    J. Chipman and T. P. Floridis: Acta Metall., 1955, vol. 3, pp. 456-9.CrossRefGoogle Scholar
  52. 52.
    H. Mitani and H. Nagai: J. Jan. Inst. Met., 1968, vol. 32, pp. 752-5.Google Scholar
  53. 53.
    A. Coskun and J. F. Elliott: Trans. Metall. Soc. AIME, 1968, vol. 242, 253-5.Google Scholar
  54. 54.
    G. R. Belton and R. J. Fruehan: Trans. Metall. Soc. AIME, 1969, vol. 245, 113-7.Google Scholar
  55. 55.
    G. I. Batalin, E. A. Beloborodova, V. A. Stukalo, and L. V. Goncharuk: Russ. J. Phy. Chem., 1971, vol. 45, pp. 1139-40.Google Scholar
  56. 56.
    N. S. Jacobson and G. M. Nehrotra: Metall. Trans. B, 1993, vol. 24B, pp. 481-6.CrossRefGoogle Scholar
  57. 57.
    H. Itoh, M. Hino, and S. Banya: Tetsu-to-Hagané, 1997, vol. 83, pp. 773-8.Google Scholar
  58. 58.
    G. K. Sigworth and J. F. Elliott: Metals Sci., 1974, vol. 8, pp. 298-310.CrossRefGoogle Scholar
  59. 59.
    H. Yin: Proc. of Int. Conf. of AISTech 2005, Warrendale, PA, 2005, vol. 2, pp. 89–97.Google Scholar
  60. 60.
    N. A. Gokcen and J. Chipman: J. Met., 1953, vol. 197, pp. 173-8.Google Scholar
  61. 61.
    A. McLean and H. B. Bell: J. Iron Steel Inst., 1965, vol. 203, p. 123-30.Google Scholar
  62. 62.
    E. T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, 1980, p. 81.Google Scholar
  63. 63.
    G.R. Holcomb and G.R. St. Pierre: Metall. Trans. B, 1992, vol. 23B, pp. 789–90.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  1. 1.Department of Materials EngineeringHanyang UniversityAnsanRepublic of Korea
  2. 2.Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea
  3. 3.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada

Personalised recommendations