Metallurgical and Materials Transactions B

, Volume 46, Issue 4, pp 1809–1825 | Cite as

Stability Diagram of Mg-Al-O System Inclusions in Molten Steel

  • Lifeng Zhang
  • Ying RenEmail author
  • Haojian Duan
  • Wen Yang
  • Liyuan Sun


In the current study, the stability diagrams of Mg-Al-O system in molten steel are calculated using two methods. After comparing the result of connecting iso-oxygen contours of different phases (iso-oxygen contours method) and calculating the border lines of different phases (border lines method), the former method is more accurate and popular. Particularly, the detailed calculation procedures and connection line principles of stability diagram are exhibited. The effects of interaction coefficient, temperature, and activity of oxides on the stability diagram are also discussed. With the currently reported method, stability diagrams of various inclusions in molten steel can be calculated to predict the formation of inclusions.


Al2O3 Activity Coefficient Molten Steel Interaction Coefficient Stability Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for support from the National Science Foundation China (Nos. 51274034, 51334002, and 51404019), State Key Laboratory of Advanced Metallurgy, Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.


  1. 1.
    L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, no. 3, pp. 271-91.CrossRefGoogle Scholar
  2. 2.
    K. Sakata: ISIJ Int., 2006, vol. 46, no. 12, pp. 1795-9.CrossRefGoogle Scholar
  3. 3.
    J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, no. 10, pp. 1333-46.CrossRefGoogle Scholar
  4. 4.
    H. Todoroki, K. Mizuno, M. Noda, and T. Tohge: ISS Steelmaking Conf. Proc., 2001, pp. 331-41.Google Scholar
  5. 5.
    O. Goro, Y. Koji, T. Syuji, and S. Ken-ichi: ISIJ Int., 2000, vol. 40, no. 2, pp. 121-8.CrossRefGoogle Scholar
  6. 6.
    J.H. Park and D. Kim: Metall. Mater. Trans. B, 2005, vol. 36, no. 4, pp. 495-502.CrossRefGoogle Scholar
  7. 7.
    J.H. Park: Mater. Sci. Eng. A, 2008, vol. 472, nos. 1-2, pp. 43-51.CrossRefGoogle Scholar
  8. 8.
    T. Nishi and K. Shinme: Tetsu-to-Hagané, 1998, vol. 84, no. 12, pp. 837-43.Google Scholar
  9. 9.
    S. Yang, Q. Wang, L. Zhang, J. Li, and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43, no. 4, pp. 731-50.CrossRefGoogle Scholar
  10. 10.
    H. Itoh, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28 (5), pp. 953-6.CrossRefGoogle Scholar
  11. 11.
    K. Fujii, T. Nagasaka, and M. Hino: ISIJ Int., 2000, vol. 40, no. 11, pp. 1059-66.CrossRefGoogle Scholar
  12. 12.
    W.-G. Seo, W.-H. Han, J.-S. Kim, and J.J. Pak: ISIJ Int., 2003, vol. 43, no. 2, pp. 201-8.CrossRefGoogle Scholar
  13. 13.
    J.H. Park: Metall. Mater. Trans. B, 2007, vol. 38, no. 4, pp. 657-63.CrossRefGoogle Scholar
  14. 14.
    M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2008, vol. 48, no. 7, pp. 885-90.CrossRefGoogle Scholar
  15. 15.
    M. Jiang, X. Wang, B. Chen, and W. Wang: ISIJ Int., 2010, vol. 50, no. 1, pp. 95-104.CrossRefGoogle Scholar
  16. 16.
    H. Ohta and H. Suito: Metall. Mater. Trans. B, 1997, vol. 28, no. 6, pp. 1131-9.CrossRefGoogle Scholar
  17. 17.
    I.-H. Jung, S.A. Decterov, and A.D. Pelton: ISIJ Int., 2004, vol. 44, no. 3, pp. 527-36.CrossRefGoogle Scholar
  18. 18.
    H. Todoroki and K. Mizuno: ISIJ Int., 2004, vol. 44, no. 8, pp. 1350-7.CrossRefGoogle Scholar
  19. 19.
    Q. Han: Proc. of 6th Int. Iron and Steel Cong., Tokyo, Japan, 1990, vol. 1, p. 166.Google Scholar
  20. 20.
    The Japan Society for the Promotion of Science: Steelmaking Data Sourcebook, Gordon and Breach Science, New York, NY, 1988.Google Scholar
  21. 21.
    R.J. Fruehan: Metall. Trans., 1970, vol. 1, p. 3403.CrossRefGoogle Scholar
  22. 22.
    H. Schenck, E. Steinmetz, and K.K. Mehta: Arch. Eisenhüttenwes., 1970, vol. 41, p. 131-8.Google Scholar
  23. 23.
    L.E. Rohde, A. Choudhury, and M. Wahlster: Arch. Eisenhüttenwes., 1971, vol. 42, pp. 165-7.Google Scholar
  24. 24.
    D. Janke and W.A. Fischer: Arch. Eisenhüttenwes., 1976, vol. 41, p. 195-8.Google Scholar
  25. 25.
    N.S. Jacobson and G.M. Mehrotra: Metall. Trans. B, 1993, vol. 24B, pp. 484-6.Google Scholar
  26. 26.
    A. Hayashi, T. Uenishi, H. Kandori, T. Miki, and M. Hino: ISIJ Int., 2008, vol. 48, no. 11, pp. 1533-41.CrossRefGoogle Scholar
  27. 27.
    Y. Kang, M. Thunman, S. Du, T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int., 2009, vol. 49, no. 10, pp. 1483-9.CrossRefGoogle Scholar
  28. 28.
    Q. Han, X. Zhang, D. Chen, and P. Wang: Metall. Trans. B, 1988, vol. 19, no. 4, pp. 617-22.CrossRefGoogle Scholar
  29. 29.
    R. Inoue and H. Suito: Metall. Mater. Trans. B, 1994, vol. 25, no. 2, pp. 235-44.CrossRefGoogle Scholar
  30. 30.
    J.D. Seo and S.H. Kim: Steel Res. Int., 2000, vol. 71, no. 4, pp. 101-6.Google Scholar
  31. 31.
    O. Knacke, O. Kubaschewski, and K. Hesselmann: Thermochemical Properties of Inorganic Substances, vol. 2, 2nd ed., Springer-Verlag, Berlin, Germany, 1991, p. 1171.Google Scholar
  32. 32.
    N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Calcium Modification of Spinel Inclusions in Aluminum-Killed Steel: Reaction Steps, vol. 43, Springer, Boston, MA, 2012, pp. 830-40.Google Scholar
  33. 33.
    H. Ono, K. Nakajima, R. Maruo, S. Agawa, and T. Usui: ISIJ Int., 2009, vol. 49, no. 7, pp. 957-64.CrossRefGoogle Scholar
  34. 34.
    J. Feng, Y. Bao, and H. Cui: Special Steel, 2010, vol. 31, no. 6, pp. 16-9.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Lifeng Zhang
    • 1
  • Ying Ren
    • 1
    Email author
  • Haojian Duan
    • 1
  • Wen Yang
    • 1
  • Liyuan Sun
    • 1
    • 2
  1. 1.State Key Laboratory of Advanced Metallurgy, Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and School of Metallurgical and Ecological EngineeringUniversity of Science and Technology Beijing (USTB)BeijingP.R. China
  2. 2.Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China

Personalised recommendations