Advertisement

Metallurgical and Materials Transactions B

, Volume 46, Issue 2, pp 537–541 | Cite as

Effect of Al2O3 on the Viscosity and Structure of CaO-SiO2-MgO-Al2O3-FetO Slags

  • Zhanjun Wang
  • Yongqi Sun
  • Seetharaman Sridhar
  • Mei Zhang
  • Min Guo
  • Zuotai Zhang
Communication

Abstract

The present paper provided a fundamental investigation on the effect of Al2O3 on the viscosity and structure of CaO-SiO2-MgO-Al2O3-FetO slags for the purpose of efficiently recycling the valuable elements from the steelmaking slags. The results show that the viscosity of CaO-SiO2-Al2O3-MgO-FetO slags slightly increases with increasing Al2O3 content. The degree of the polymerization (DOP) of quenched slags, determined from Raman spectra and magic angle spinning–nuclear magnetic resonance, is also found to increase with increasing Al2O3 content. It can be deduced that the increasing DOP can promote the formation of gehlenite phase (Ca2Al2SiO7), thus facilitating the formation of higher phosphorous (or vanadium) contained solid solution (n′Ca2SiO4·Ca3((P or V)O4)2). As Al2O3 content increases up to a specific value, the charge compensating ions which present near [AlO4]-tetrahedra and [FeO4]-tetrahedra are not fully supplied due to the scarcity of Ca2+. In this case, the existing Fe3+ in the melt cannot completely form [FeO4]-tetrahedra and part of Fe3+ would form [FeO6]-octahedra to substitute Ca2+ to modify the slags.

Keywords

Al2O3 Network Modifier Steel Slag Al2O3 Content Slag Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Supports by the National High Technology Research and Development Program of China (863 Program, 2012AA06A114), the Key Projects in the National Science & Technology Pillar Program (2013BAC14B07), and the National Natural Science Foundation of China (51472007, 51272005 and 5172001) are acknowledged.

References

  1. 1.
    B. Das, S. Prakash, P. Reddy, and V. Misra: Resour. Conserv. Recy., 2007, vol. 50, pp. 40-57.CrossRefGoogle Scholar
  2. 2.
    L. Lin, Y.P. Bao, M. Wang, and H.M. Zhou: Ironmak. Steelmak., 2014, vol. 41, pp. 193-198.CrossRefGoogle Scholar
  3. 3.
    L.S. Li, L.S. Wu, Y.L. Su, L.Yu, X.R. Wu, and Y.C. Dong: Acta Metall. Sin., 2008, vol. 44, pp. 603-608.Google Scholar
  4. 4.
    L. Lin, Y.P. Bao, M. Wang, H.M. Zhou, and L.Q. Zhang: Ironmak. Steelmak., 2013, vol. 40, pp. 521-527.CrossRefGoogle Scholar
  5. 5.
    J. Diao, B. Xie, Y.H. Wang, and X. Guo: ISIJ Int., 2012, vol. 52, pp. 955-959.CrossRefGoogle Scholar
  6. 6.
    L. Yu, Y.C. Dong, G.Z. Ye, and S.C. Du: Ironmak. Steelmak., 2007, vol. 34, pp. 131-137.CrossRefGoogle Scholar
  7. 7.
    M.Y. Wang, L.N. Zhang, L. Zhang, Z.T. Sui, and G.F. Tu: Trans. Nonferrous Met. Soc. China, 2006, vol. 16, pp. 421-425.CrossRefGoogle Scholar
  8. 8.
    Y.Q. Sun, J. Li, X.D. Wang, and Z.T. Zhang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1446-1455.CrossRefGoogle Scholar
  9. 9.
    X. Wu, L. Li, and Y. Dong: Metallurgist, 2011, vol. 55, pp. 401-409.CrossRefGoogle Scholar
  10. 10.
    J.H. Park, H. Kim, and D.J. Min: Metall. Mater. Trans. B, 2008, vol. 39, pp. 150-153.CrossRefGoogle Scholar
  11. 11.
    J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35, pp. 269-275.CrossRefGoogle Scholar
  12. 12.
    F. Shahbazian, S.C. Du and, S. Seetharaman: ISIJ Int., 2002, vol. 42, pp. 155–62.Google Scholar
  13. 13.
    H.S. Park, S.S. Park, and I. Sohn: Metall. Mater. Trans. B, 2011, vol. 42, pp. 692-699.Google Scholar
  14. 14.
    B.O. Mysen, D. Virgo, C.M. Scarfe, and D.J. Cronin: Am. Mineral., 1985, vol. 70, pp. 487-498.Google Scholar
  15. 15.
    P. McMillan: Am. Mineral., 1984, vol. 69, pp. 622-644.Google Scholar
  16. 16.
    D.R. Neuvill, L. Cormier, and D. Massiot: Chem. Geol., 2006, vol. 229, pp. 173-185.CrossRefGoogle Scholar
  17. 17.
    I. Sohn and D.J. Min: Steel Res. Int., 2012, vol. 83, pp. 611-630.CrossRefGoogle Scholar
  18. 18.
    F. Shahbazian, D. Sichen, and S. Seetharaman: ISIJ Int., 2002, vol. 42, pp. 155-162.CrossRefGoogle Scholar
  19. 19.
    H. Kim, H. Matsuura, F. Tsukihashi, W.L. Wang, D.J. Min, and I. Sohn: Metall. Mater. Trans. B, 2013, vol. 44, pp. 5-12.CrossRefGoogle Scholar
  20. 20.
    L. Forsbacka, L. Holappa, T. Iida, Y. Kita, and Y. Toda: Scand. J. Metall., 2003, vol. 32, pp. 273-280.CrossRefGoogle Scholar
  21. 21.
    J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi: ISIJ Int., 2004, vol. 44, pp. 1291-1297.CrossRefGoogle Scholar
  22. 22.
    Y.B. Cheng, C.Xu, S.Y. Pan, Y.F. Xia, R.C. Liu, and S.X. Wang: ISIJ Int., 1986, vol. 80, pp. 201-208.Google Scholar
  23. 23.
    J.L. Liao, Y.Y. Zhang, S. Sridhar, X.D. Wang, and Z.T. Zhang: ISIJ Int., 2012, vol. 52, pp. 753-758.CrossRefGoogle Scholar
  24. 24.
    K. Zheng, Z.T. Zhang, L.L. Liu, and X.D. Wang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1389-1397.CrossRefGoogle Scholar
  25. 25.
    H. Park, J.Y. Park, G.H. Kim, and I. Sohn: Steel Res. Int., 2012, vol. 83, pp. 150-156.CrossRefGoogle Scholar
  26. 26.
    J.S. Machin, T.B. Yee, and D.L. Hanna: J. Am. Ceram. Soc., 1952, vol. 35, pp. 322-325.CrossRefGoogle Scholar
  27. 27.
    S.S. Jung and I. Sohn: Ennviron. Sci. Technol., 2014, vol. 48, pp. 1886-1892.CrossRefGoogle Scholar
  28. 28.
    Y.M. Kuo, K.L. Huang, C.T. Wang, and J.W. Wang: J. Hazard. Mater. 2009, vol. 169, pp. 626-634.CrossRefGoogle Scholar
  29. 29.
    J.L. Li, Q.F. Shu, and K.C. Chou: ISIJ Int., 2014, vol. 54, pp. 721-727.CrossRefGoogle Scholar
  30. 30.
    G. Lucazeau, N. Sergent, T. Pagnier, A. Shaula, and V. Kharton: J. Raman Spectrosc., 2007, vol. 38, pp. 21-33.CrossRefGoogle Scholar
  31. 31.
    R. Iordanova, Y. Dimitriev, V. Dimitrov, and D. Klissurski: J. Non-Cryst. Solids, 1994, vol. 167, pp. 74-80.CrossRefGoogle Scholar
  32. 32.
    D.L.A. de Faria, S.V. Silva, and M.T. de Oliveira: J. Raman Spectrosc., 1997, vol. 28, pp. 873-878.CrossRefGoogle Scholar
  33. 33.
    C. Weigel, L. Cormier, G. Calas, L. Galoisy, and D.T. Bowron: Phys. Rev. B, 2008, vol. 78, pp. 064202(1)-064202(11).Google Scholar
  34. 34.
    J.D. Frantza and B.O. Mysen: Chem. Geol., 1995, vol. 121, pp. 155-176.CrossRefGoogle Scholar
  35. 35.
    J. Rocha, S.W. Carr, and J. Klinowski: Abstr. Am. Chem. Soc., 1991, vol. 2002, pp. 6-10.Google Scholar
  36. 36.
    K. Kanehashi and J.F. Stebbins: J. Non-Cryst. Solids, 2007, vol. 353, pp. 4001-4010.CrossRefGoogle Scholar
  37. 37.
    S. Sukenaga, T. Nagahisa, K. Kanehashi, N. Saito, and K. Nakashima: ISIJ Int., 2011, vol. 51, pp. 333-335.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.Department of Energy and Resources Engineering and Beijing Key Laboratory for Solid Waste Utilization and Management, College of EngineeringPeking UniversityBeijingP.R. China
  3. 3.WMG, Steels Processing Research CentreUniversity of WarwickCoventryUK

Personalised recommendations