Skip to main content
Log in

Study of the Reaction Stages and Kinetics of the Europium Oxide Carbochlorination

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The europium oxide (Eu2O3(s)) chlorination reaction with sucrose carbon was studied by thermogravimetry between room temperature and 1223 K (950 °C). The nonisothermal thermogravimetry showed that the reaction consists of three stages, and their stoichiometries were studied. The product of the first stage was europium oxychloride, and it showed independence of the reaction kinetics with the carbon content. Subsequently, in the second stage, the EuOCl(s) was carbochlorinated with formation of EuCl3(l) and its evaporation is observed in the third stage. The analysis by Fourier transform infrared spectroscopy of gaseous species showed that the reaction at second stage occurs with the formation of CO2(g) and CO(g). Both reactants and products were analyzed by X-ray diffraction, scanning electron microscopy and wavelength-dispersive X-ray fluorescence spectroscopy. The influence of carbon content, total flow rate, sample initial mass, chlorine partial pressure, and temperature were evaluated. The second stage kinetics was analyzed, which showed an anomalous behavior caused by generation of chlorine radicals during interaction of Cl2(g) and carbon. It was found that the reaction rate at 933 K (660 °C) was proportional to a potential function of the chlorine partial pressure whose exponent is 0.56. The conversion curves were analyzed with the Avrami-Erofeev model and it was obtained an activation energy of 154 ± 5 kJ mol–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. C.K. Gupta and N. Krishnamurthy: Extractive Metallurgy of Rare Earths, CRC Press, London, U.K., 2005, pp. 27–31, 151–2.

  2. Z.C. Wang, L.Q. Zhang, P.X. Lei, and M.Y. Chi: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 661–68.

    Article  Google Scholar 

  3. L.Q. Zhang, Z.C. Wang, S.X. Tong, P.X. Lei, and W.Z. Wei: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 217–21.

    Article  Google Scholar 

  4. N. Kanari, E. Allain, R. Joussemet, J. Mochón, I. Ruiz-Bustinza, and I. Gaballah: Thermochim. Acta, 2009, vol. 495, pp. 42–50.

    Article  Google Scholar 

  5. C.-H. Kim, S.I. Woo, and S.H. Jeon: Ind. Eng. Chem. Res., 2000, vol. 39, no. 5, pp. 1185–92.

    Article  Google Scholar 

  6. J.A. Sommers: U.S. Patent US5569440 A, 1994.

  7. Y. Mochizuki, N. Tsubouchi, and K. Sugawara: ACS Sust. Chem. Eng., 2013, vol. 1 (6), 3, pp. 655–62.

  8. F. Habashi: Handbook of Extractive Metallurgy, Wiley, New York, NY, 1997.

    Google Scholar 

  9. W. Kroll: Trends Electrochem. Soc., 1940, vol. 78, pp. 35–47.

    Article  Google Scholar 

  10. J.P. Gaviría and A.E. Bohé: Thermochim. Acta, 2010, vol. 509, pp. 100–10.

    Article  Google Scholar 

  11. J.P. Gaviría, G.G. Fouga, and A.E. Bohé: Thermochim. Acta, 2011, vol. 517, pp. 24–33.

    Article  Google Scholar 

  12. W. Brugger and E. Greinacher: J. Met., 1967, vol. 19, pp. 32–35.

    Google Scholar 

  13. M.A. Gimenes and H.P. Oliveira: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1007–13.

    Article  Google Scholar 

  14. T. Ozaki, J. Jiang, K. Murase, K. Machida, and G. Adachi: J. Alloy. Compd., 1998, vol. 265, pp. 125–31.

    Article  Google Scholar 

  15. K. Murase, T. Fukami, K. Machida, and G. Adachi: Ind. Eng. Chem. Res., 1995, vol. 34, pp. 3963–69.

    Article  Google Scholar 

  16. M.R. Esquivel, A.E. Bohé, and D.M. Pasquevich: Thermochim. Acta, 2003, vol. 403, pp. 207–78.

    Article  Google Scholar 

  17. M.R. Esquivel, A.E. Bohé, and D.M. Pasquevich: Trans. Inst. Min. Metall. (Sect. C: Miner. Process. Extract. Metall.), 2002, vol. 111, pp. C149–C55.

  18. F.J. Pomiro, G.G. Fouga, and A.E. Bohé: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1509–19.

    Article  Google Scholar 

  19. J. Gonzalez, M.C. Ruiz, A.E. Bohé, and D.M. Pasquevich: Carbon, 1999, vol. 37, pp. 1979–88.

    Article  Google Scholar 

  20. Joint Committee for Powder Diffraction Standards, Powder Diffraction File, International Center for Diffraction Data, Swarthmore, PA, 1996.

    Google Scholar 

  21. O. Knacke, O. Kubaschewski, and K. Hesselman: Thermochemical Properties of Inorganic Substances, 2nd ed., Springer, Berlin, Germany 1991, pp. 1–1113.

    Google Scholar 

  22. D. Brown: Halides of the Lanthanides and Actinides, John Wiley and Sons, New York, NY, 1968, p. 117.

    Google Scholar 

  23. L.P. Ruzinov and B.S. Guljanickij: Ravnovesnye Prevrasoenija Metallugiceskin Reaktseij, Moscow, Russia, 1975, p. 416.

    Google Scholar 

  24. L. Rycerz and M. Gaune-Escard: Z. Naturforsch, 2002, vol. 57A, pp. 215–20.

    Google Scholar 

  25. HSC 6.12, Chemistry for Windows, Outokumpu Research Oy, Pori, Finland, 2007.

  26. D.M. Pasquevich: Ph.D. Dissertation, Facultad de Ciencias Exactas de la Universidad Nacional de La Plata, Buenos Aires, Argentina, 1990.

  27. I. Barin and W. Schuler: Metall. Trans. B, 1980, vol. 11, pp. 199–207.

    Article  Google Scholar 

  28. D.M. Pasquevich, J.A. Gamboa, and A. Caneiro: Thermochim. Acta, 1992, vol. 29, pp. 209–22.

    Article  Google Scholar 

  29. S.L. Stefanyuk and I.S. Morozov: Z. Prikl. Khim., 1965, vol. 38, pp. 737–42.

    Google Scholar 

  30. W.E. Dunn, Jr.: Metall. Trans. B, 1979, vol. 10, pp. 271–77.

    Article  Google Scholar 

  31. V.T. Amorebieta and A.J. Colussi: J. Phys. Chem. Kinet., 1985, vol. 17, pp. 849–58.

    Article  Google Scholar 

  32. O. Knacke, O. Kubaschewski, and K. Hesselman: Thermochemical Properties of Inorganic substances, 2nd ed., Springer, Berlin, Germany, 1991.

    Google Scholar 

  33. J. Szekely, J.W. Evans, and H.Y. Sohn: Gas-Solid Reactions, Academic Press, New York, NY, 1976.

    Google Scholar 

  34. M.W. Ojeda, J.B. Rivarola, and O.D. Quiroga: Min. Eng., 2002, vol. 14, pp. 585–91.

    Article  Google Scholar 

  35. D.M. Pasquevich and V.T. Amorieta: Phys. Chem. Chem. Phys., 1992, vol. 96, pp. 534–7.

    Google Scholar 

  36. S.K. Kim: Ph.D. Dissertation, University of Utah, Salt Lake City, UT, 1981.

  37. W.E. Ranz and W.R. Marshall, Jr.: Chem. Eng. Prog., 1952, vol. 48, pp. 141–6, 173–80.

  38. G.H. Geiger and D.R. Poirier: Transport Phenomena in Metallurgy, Addison-Wesley, Boston, MA, 1973, pp. 7–13.

    Google Scholar 

  39. J.H. Flynn: J. Therm. Anal., 1988, vol. 34, pp. 367–81.

    Article  Google Scholar 

  40. S. Vyazovkin: Thermochim. Acta, 2000, vol. 355, pp. 155–63.

    Article  Google Scholar 

  41. T.J.W. De Bruijn, W.A. De Jong, and P.J. Van Den Berg: Thermochim. Acta, 1981, vol. 45, pp. 315–25.

    Article  Google Scholar 

  42. A. Ortega, L. Perez Maqueda, and J.M. Criado: Thermochim. Acta, 1995, vol. 254, pp. 147–52.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico J. Pomiro.

Additional information

Manuscript submitted April 11, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomiro, F.J., Fouga, G.G., Gaviría, J.P. et al. Study of the Reaction Stages and Kinetics of the Europium Oxide Carbochlorination. Metall Mater Trans B 46, 304–315 (2015). https://doi.org/10.1007/s11663-014-0196-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0196-7

Keywords

Navigation