Metallurgical and Materials Transactions B

, Volume 45, Issue 6, pp 2186–2193 | Cite as

Aspect Ratio Effects on Fluid Flow Fluctuations in Rectangular Cavities

  • Rudi Kalter
  • Mark J. Tummers
  • Jeroen B. Wefers Bettink
  • Bernhard W. Righolt
  • Sasa Kenjereš
  • Chris R. Kleijn


The flow from a submerged bifurcated nozzle into rectangular liquid-filled cavities with width-to-thickness ratios W/T = 6.5, 11, and 18 has been studied using free surface visualization and particle tracking. When W/T = 11 and when W/T = 18, self-sustained oscillations of the submerged jets and the free surface are present. When W/T = 6.5, the self-sustained oscillations are no longer present, but oscillations with the frequency of gravity waves occur. We propose a critical value of W/T above which self-sustained jet oscillations occur, based on the spreading angle of turbulent jets. When W/T is larger than this critical value, the shear layers of the jet reach the front and back wall of the cavity before the jet can impinge the side wall, resulting in semi two-dimensional flow in the plane between the front and the back wall. Two-dimensional recirculation zones form alongside the jet leading to the jet oscillations. When W/T is smaller than this critical value, the jet can develop like a free turbulent jet up to an impingement point at the narrow side wall. When the jet impinges the side wall, flow in the directions parallel and perpendicular to the front and back walls is possible, resulting in complex three-dimensional flow patterns. The critical value for W/T, based on the known 12 deg spreading angle of turbulent jets is W/T = 10, which is in good agreement with the experimental results.


  1. 1.
    T.A. Honeyands, J. Herbertson, Steel Res. 66 (7) (1995) 287–93.Google Scholar
  2. 2.
    E. Torres-Alonso, R. Morales, S. Garc´ıa-Hernández, J. Palafox-Ramos, Metall. Mater. Trans. B, 41B (2010) 583–597.CrossRefGoogle Scholar
  3. 3.
    E. Torres-Alonso, R.D. Morales, L.G. Demedices, A. Nájera, J. Palafox-Ramos, and P. Ramírez-López: ISIJ Int., 2007, vol. 47 (5), pp. 679–88.Google Scholar
  4. 4.
    R. Chaudhary, B.T. Rietow, and B.G. Thomas: Mater. Sci. Technol. Conf., AIST/TMS, Pittsburgh, PA, 2009, pp. 1090–1101.Google Scholar
  5. 5.
    Q. Yuan, B. Thomas, S. P. Vanka, Metall. Mater. Trans. B, 35B, (2004) 685–702.CrossRefGoogle Scholar
  6. 6.
    Y. J. Jeon, H. J. Sung, S. Lee, Metall. Mater. Trans. B, 41B (2010) 121–130.CrossRefGoogle Scholar
  7. 7.
    R. Kalter, M. J. Tummers, S. Kenjereš, B. W. Righolt, C. R. Kleijn, Int. J. Heat Fluid Flow, 44 (2013) 365–374.CrossRefGoogle Scholar
  8. 8.
    D. Rockwell, AIAA J., 21 (5) (1983) 645–664.CrossRefGoogle Scholar
  9. 9.
    D. Rockwell, E. Naudascher, Ann. Rev. Fluid Mech., 11 (1979) 67–94.CrossRefGoogle Scholar
  10. 10.
    N. J. Lawson, M. R. Davidson, J. Fluids Eng., 124 (2) (2002) 535–543.CrossRefGoogle Scholar
  11. 11.
    C. A. Real-Ramirez, J. I. Gonzalez-Trejo, Int. J. Miner. Metall. Mater., 18 (4) (2011) 397–406.CrossRefGoogle Scholar
  12. 12.
    J. Crocker, D. Grier, J. Colloid Interface Sci., 179 (1) (1996) 298–310.CrossRefGoogle Scholar
  13. 13.
    S. B. Pope, Turbulent Flows Cambridge University Press, Cambridge 2000.CrossRefGoogle Scholar
  14. 14.
    H. Lamb. Hydrodynamics. 6th ed. Dover, New York, 1932.Google Scholar
  15. 15.
    B. M. Gebert, M. R. Davidson, M. J. Rudman, Appl. Math. Modell. 22 (11) (1998) 843–850.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Rudi Kalter
    • 1
  • Mark J. Tummers
    • 1
  • Jeroen B. Wefers Bettink
    • 1
  • Bernhard W. Righolt
    • 1
  • Sasa Kenjereš
    • 1
  • Chris R. Kleijn
    • 1
  1. 1.TU DelftDelftThe Netherlands

Personalised recommendations