Metallurgical and Materials Transactions B

, Volume 45, Issue 6, pp 2247–2261 | Cite as

A Coupled Thermal, Fluid Flow, and Solidification Model for the Processing of Single-Crystal Alloy CMSX-4 Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair (Part I)

  • Ranadip Acharya
  • Rohan Bansal
  • Justin J. Gambone
  • Suman Das
Article

Abstract

Scanning laser epitaxy (SLE) is a new laser-based additive manufacturing technology under development at the Georgia Institute of Technology. SLE is aimed at the creation of equiaxed, directionally solidified, and single-crystal deposits of nickel-based superalloys through the melting of alloy powders onto superalloy substrates using a fast scanning Nd:YAG laser beam. The fast galvanometer control movement of the laser (0.2 to 2 m/s) and high-resolution raster scanning (20 to 200 µm line spacing) enables superior thermal control over the solidification process and allows the production of porosity-free, crack-free deposits of more than 1000 µm thickness. Here, we present a combined thermal and fluid flow model of the SLE process applied to alloy CMSX-4 with temperature-dependent thermo-physical properties. With the scanning beam described as a moving line source, the instantaneous melt pool assumes a convex hull shape with distinct leading edge and trailing edge characteristics. Temperature gradients at the leading and trailing edges are of order 2 × 105 and 10K/m, respectively. Detailed flow analysis provides insights on the flow characteristics of the powder incorporating into the melt pool, showing velocities of order 1 × 10–4 m/s. The Marangoni effect drives this velocity from 10 to 15 times higher depending on the operating parameters. Prediction of the solidification microstructure is based on conditions at the trailing edge of the melt pool. Time tracking of solidification history is incorporated into the model to couple the microstructure prediction model to the thermal-fluid flow model, and to predict the probability of the columnar-to-equiaxed transition. Qualitative agreement is obtained between simulation and experimental result.

Supplementary material

Supplementary material 1 (WMV 1563 kb)

Supplementary material 2 (WMV 8908 kb)

Supplementary material 3 (WMV 2122 kb)

References

  1. 1.
    R.J. Stueber, T. Milidantri, and M. Tadayon: Chromalloy Gas Turbine Corporation, 1994, p. 8.Google Scholar
  2. 2.
    J.J. Marcin, Jr., J.A. Neutra, D.H. Abbott, J.P. Aduskevich, D.M Shah, D.N. Carraway, R.P. Langevin, M.R. Sauerhoefer, and R.A. Stone: United technologies Corporation, 2001, p. 19.Google Scholar
  3. 3.
    M. Gaumann: EPFL Lausanne, Lausanne, 1999, p 117.Google Scholar
  4. 4.
    A. Mortensen and S. Suresh: Functionally graded metals and metal-ceramic composites: Part 1 processing. Maney, London, ROYAUME-UNI, 1995.Google Scholar
  5. 5.
    Weiping Liu and J. N. DuPont: Acta Materialia 2004, vol. 52, pp. 4833-4847.Google Scholar
  6. 6.
    M. Gäumann, S. Henry, F. Cléton, J. D. Wagnière and W. Kurz: Materials Science and Engineering: A 1999, vol. 271, pp. 232-241.CrossRefGoogle Scholar
  7. 7.
    T. D. Anderson, J. N. DuPont and T. DebRoy: Acta Materialia 2010, vol. 58, pp. 1441-1454.CrossRefGoogle Scholar
  8. 8.
    S. Mokadem: EPFL Lausanne, Lausanne, 2004, p. 214.Google Scholar
  9. 9.
    S. Mokadem, C. Bezençon, A. Hauert, A. Jacot and W. Kurz: Metallurgical and Materials Transactions A 2007, vol. 38, pp. 1500-1510.CrossRefGoogle Scholar
  10. 10.
    M. Gäumann, C. Bezençon, P. Canalis and W. Kurz: Acta Materialia 2001, vol. 49, pp. 1051-1062.CrossRefGoogle Scholar
  11. 11.
    T. H. C. Childs, C. Hauser and M. Badrossamay: CIRP Annals - Manufacturing Technology 2004, vol. 53, pp. 191-194.CrossRefGoogle Scholar
  12. 12.
    T. H. Childs and A. Tontowi: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2001, vol. 215, pp. 1481-1495.CrossRefGoogle Scholar
  13. 13.
    C. Hauser and T. H. C. Childs: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2005, vol. 219, pp. 379-384.CrossRefGoogle Scholar
  14. 14.
    W. Zhang, C. H. Kim and T. DebRoy: Journal of Applied Physics 2004, vol. 95, pp. 5210-5219.CrossRefGoogle Scholar
  15. 15.
    K. Mundra, T. DebRoy and K. M. Kelkar: Numerical Heat Transfer, Part A: Applications 1996, vol. 29, pp. 115-129.CrossRefGoogle Scholar
  16. 16.
    M Picasso and AFA Hoadley: International Journal of Numerical Methods for Heat & Fluid Flow 1994, vol. 4, pp. 61-83.CrossRefGoogle Scholar
  17. 17.
    D. V. Bedenko and O. B. Kovalev, Thermophys. Aeromech. 2013, vol. 20, pp. 251-261.CrossRefGoogle Scholar
  18. 18.
    Z. Liu and H. Qi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1903–1915.CrossRefGoogle Scholar
  19. 19.
    Jyotirmoy Mazumder, Optical Engineering 1991, vol. 30, pp. 1208-1219.CrossRefGoogle Scholar
  20. 20.
    C. L. Chan, J. Mazumder and M. M. Chen, Journal of Applied Physics 1988, vol. 64, p. 6166.CrossRefGoogle Scholar
  21. 21.
    L. X. Yang, X. F. Peng and B. X. Wang, International Journal of Heat and Mass Transfer 2001, vol. 44, pp. 4465-4473.CrossRefGoogle Scholar
  22. 22.
    M. Rappaz and Ch. A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–360.CrossRefGoogle Scholar
  23. 23.
    Weiping Liu and J. N. DuPont: Acta Materialia 2005, vol. 53, pp. 1545-1558.CrossRefGoogle Scholar
  24. 24.
    R. Acharya, J.J. Gambone, R. Bansal, P. Cilino, and S. Das: in EPD Congress 2013, John Wiley & Sons, Inc., Hoboken, NJ, pp 55–62.Google Scholar
  25. 25.
    Wenda Tan, Shaoyi Wen, Neil Bailey and YungC Shin, Metall and Materi Trans B 2011, vol. 42B, pp. 1306-1318.CrossRefGoogle Scholar
  26. 26.
    Taishi Matsushita, Hans-Jörg Fecht, Rainer K. Wunderlich, Ivan Egry and Seshadri Seetharaman, J. Chem. Eng. Data 2011, vol. 54, pp. 2584-2592.CrossRefGoogle Scholar
  27. 27.
    R. Acharya, R. Bansal, J.J. Garnbone, and S. Das: CFD Modeling and Simulation in Materials Processing. Wiley, Hoboken, 2012, pp. 197–204.CrossRefGoogle Scholar
  28. 28.
    Merton C Flemings, Metallurgical transactions 1974, vol. 5, pp. 2121-2134.CrossRefGoogle Scholar
  29. 29.
    MB Henderson, D Arrell, R Larsson, M Heobel and G Marchant: Science and Technology of Welding & Joining 2004, vol. 9, pp. 13-21.CrossRefGoogle Scholar
  30. 30.
    D Dye, O Hunziker and RC Reed: Acta Materialia 2001, vol. 49, pp. 683-697.CrossRefGoogle Scholar
  31. 31.
    LO Osoba, RK Sidhu and OA Ojo: Materials Science and Technology 2011, vol. 27, pp. 897-902.CrossRefGoogle Scholar
  32. 32.
    Gürel Çam and Mustafa Koçak: International Materials Reviews 1998, vol. 43, pp. 1-44.CrossRefGoogle Scholar
  33. 33.
    M.J. Donachie, S.J. Donachie: Superalloys: A Technical Guide. 2nd ed., ASM International, Materials Park, OH, 2003, pp. 246–47.Google Scholar
  34. 34.
    Ian Hamill: Implementation of a Solidification Model in CFX-5, CFX Ltd., Oxfordshire, UK, May 2003.Google Scholar
  35. 35.
    Julian C. Smith, Peter Harriot, Warren L. McCabe: Unit Operations of Chemical Engineering. 7th ed., McGraw-Hill, New York, 2005, pp. 163-65.Google Scholar
  36. 36.
    O. Hunziker, D. Dye, S.M. Roberts, and R.C. Reed: in Mathematical Modelling of Weld Phenomena, vol. 5, IOM Communications, London, 2001, pp 299–320.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Ranadip Acharya
    • 1
  • Rohan Bansal
    • 1
    • 2
  • Justin J. Gambone
    • 1
    • 3
  • Suman Das
    • 1
    • 4
  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Chart IndustriesBuffaloUSA
  3. 3.GE Global ResearchNiskayunaUSA
  4. 4.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations