Advertisement

Metallurgical and Materials Transactions B

, Volume 45, Issue 3, pp 1081–1097 | Cite as

Crystallization Characteristics of CaO-Al2O3-Based Mold Flux and Their Effects on In-Mold Performance during High-Aluminum TRIP Steels Continuous Casting

  • Cheng-Bin Shi
  • Myung-Duk Seo
  • Jung-Wook ChoEmail author
  • Seon-Hyo Kim
Article

Abstract

Crystallization behaviors of the newly developed lime-alumina-based mold fluxes for high-aluminum transformation induced plasticity (TRIP) steels casting were experimentally studied, and compared with those of lime-silica-based mold fluxes. The effects of mold flux crystallization characteristics on heat transfer and lubrication performance in casting high-Al TRIP steels were also evaluated. The results show that the crystallization temperatures of lime-alumina-based mold fluxes are much lower than those of lime-silica-based mold fluxes. Increasing B2O3 addition suppresses the crystallization of lime-alumina-based mold fluxes, while Na2O exhibits an opposite effect. In continuous cooling of lime-alumina-based mold fluxes with high B2O3 contents and a CaO/Al2O3 ratio of 3.3, faceted cuspidine precipitates first, followed by needle-like CaO·B2O3 or 9CaO·3B2O3·CaF2. In lime-alumina-based mold flux with low B2O3 content (5.4 mass pct) and a CaO/Al2O3 ratio of 1.2, the formation of fine CaF2 takes place first, followed by blocky interconnected CaO·2Al2O3 as the dominant crystalline phase, and rod-like 2CaO·B2O3 precipitates at lower temperature during continuous cooling of the mold flux. In B2O3-free mold flux, blocky interconnected 3CaO·Al2O3 precipitates after CaF2 and 3CaO·2SiO2 formation, and takes up almost the whole crystalline fraction. The casting trials show that the mold heat transfer rate significantly decreases near the meniscus during the continuous casting using lime-alumina-mold fluxes with higher crystallinity, which brings a great reduction of surface depressions on cast slabs. However, excessive crystallinity of mold flux causes poor lubrication between mold and solidifying steel shell, which induces various defects such as drag marks on cast slab. Among the studied mold fluxes, lime-alumina-based mold fluxes with higher B2O3 contents and a CaO/Al2O3 ratio of 3.3 show comparatively improved performance.

Keywords

Differential Scanning Calorimetry CaF2 Differential Scanning Calorimetry Curve Mold Flux Differential Scanning Calorimetry Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to express sincere thanks to Mr. Seung-ho Shin and Mr. Min-su Kim of Graduate Institute of Ferrous Technology, POSTECH for their help in preparing mold flux samples. This work was financially supported by the Global Excellent Technology Innovation (Grant No. 10045029) funded by the Ministry of Trade, Industry & Energy (MOTIE) of Korea.

References

  1. 1.
    B. Sauerhammer, D. Senk, E. Schmidt, M. Safi, M. Spiegel, and S. Sridhar: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 503 512.CrossRefGoogle Scholar
  2. 2.
    M. Gomez, C.I. Garcia, and A.J. Deardo: ISIJ Int., 2010, vol. 50, pp. 139 146.CrossRefGoogle Scholar
  3. 3.
    D.W. Suh, S.J. Park, C.S. Oh, and S.J. Kim: Scripta Mater., 2007, vol. 57, pp. 1097 1100.CrossRefGoogle Scholar
  4. 4.
    M.D. Meyer, D. Vanderschueren, and B.C.De Cooman: ISIJ Int., 1999, vol. 39, pp. 813 822.CrossRefGoogle Scholar
  5. 5.
    T.L. Baum, R.J. Fruehan, and S. Sridhar: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 287 297.CrossRefGoogle Scholar
  6. 6.
    P. J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Humbeeck, and F. Delannay: ISIJ Int., 2001, vol. 41, pp. 1068 1074.CrossRefGoogle Scholar
  7. 7.
    J.J. Becker, M.A. Madden, T.T. Natarajan, T.J. Piccone, E.J. Serrano, S.R. Story, S.C. Ecklund-Baker, I.A. Nickerson, and W.K. Schlichting: AISTech 2005 Conf. Proc., vol. II, Association for Iron & Steel Technology, Charlotte, NC, 2005, pp. 99–106.Google Scholar
  8. 8.
    S. Street, K. James, N. Minor, A. Roelant, and J. Tremp: Iron Steel Technol., 2008, vol. 5, pp. 38 49.Google Scholar
  9. 9.
    K. Blazek, H.B. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: Iron Steel Technol., 2011, vol. 8, pp. 232 240.Google Scholar
  10. 10.
    W.L. Wang, K. Blazek, and A. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 66 74.CrossRefGoogle Scholar
  11. 11.
    J.W. Cho, K. Blazek, M. Frazee, H.B. Yin, J.H. Park, and S.W. Moon: ISIJ Int., 2013, vol. 53, pp. 62 70.CrossRefGoogle Scholar
  12. 12.
    T. Wu, Q. Wang, S. He, J. Xu, X. Long, and Y. Lu: Steel Res. Int., 2012, vol. 83, pp. 1194 1202.CrossRefGoogle Scholar
  13. 13.
    K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmaking Steelmaking, 2005, vol. 32, pp. 26 34.CrossRefGoogle Scholar
  14. 14.
    Y. Kashiwaya, C.E. Cicutti, and A.W. Cramb: ISIJ Int., 1998, vol. 38, pp. 357 365.CrossRefGoogle Scholar
  15. 15.
    H. Liu, G. Wen, and P. Tang: ISIJ Int., 2009, vol. 49, pp. 843 850.CrossRefGoogle Scholar
  16. 16.
    L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 354 362.CrossRefGoogle Scholar
  17. 17.
    J. Li, W. Wang, J. Wei, D. Huang, and H. Matsuura: ISIJ Int., 2012, vol. 52, pp. 2220 2225.CrossRefGoogle Scholar
  18. 18.
    B. Lu, W. Wang, J. Li, H. Zhao, and D. Huang: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 365 377.CrossRefGoogle Scholar
  19. 19.
    L. Zhou, W. Wang, D. Huang, J. Wei, and J. Li: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 925 936.CrossRefGoogle Scholar
  20. 20.
    L. Zhou, W. Wang, R. Liu, and B.G. Thomas: Metall. Mater. Trans. B, 2013, vol. 44B, 1264 1279.CrossRefGoogle Scholar
  21. 21.
    Z. Hao, W. Chen, and C. Lippold: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 805 812.CrossRefGoogle Scholar
  22. 22.
    T. Watanabe, H. Hashimoto, M. Hayashi, and K. Nagata: ISIJ Int., 2008, vol. 48, pp. 925 933.CrossRefGoogle Scholar
  23. 23.
    K. Tsutsumti. T. Nagasaka, and M. Hino: ISIJ Int., 1999, vol. 39, pp. 1150-1159.CrossRefGoogle Scholar
  24. 24.
    Z.T. Zhang, G.H. Wen, J.L. Liao, and S. Sridhar: Steel Res. Int., 2010, vol. 81, pp. 516 528.CrossRefGoogle Scholar
  25. 25.
    H.G. Ryu, Z.T. Zhang, J.W. Cho, G.H. Wen, and S. Sridhar: ISIJ Int., 2010, vol. 50, pp. 1142 1150.CrossRefGoogle Scholar
  26. 26.
    M. Hanao: ISIJ Int., 2013, vol. 53, pp. 648 654.CrossRefGoogle Scholar
  27. 27.
    M.D. Seo, C.B. Shi, J.W. Cho, and S.H. Kim: Unpublished research.Google Scholar
  28. 28.
    H. Nakada and K. Nagata: ISIJ Int., 2006, vol. 46, pp. 441 449.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  • Cheng-Bin Shi
    • 1
  • Myung-Duk Seo
    • 1
  • Jung-Wook Cho
    • 2
    Email author
  • Seon-Hyo Kim
    • 1
  1. 1.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
  2. 2.Graduate Institute of Ferrous TechnologyPohang University of Science and Technology (POSTECH)PohangRepublic of Korea

Personalised recommendations