Advertisement

Metallurgical and Materials Transactions B

, Volume 45, Issue 3, pp 903–913 | Cite as

In Situ Observation of the Formation and Interaction Behavior of the Oxide/Oxysulfide Inclusions on a Liquid Iron Surface

  • Pengcheng Yan
  • Muxing GuoEmail author
  • Bart Blanpain
Article

Abstract

Inclusion formation and its behavior at the early stage of deoxidation and alloying operation has a considerable influence on steel cleanliness. In the present work, steel alloying, such as Mn, Al, FeSi, and FeMn additions to the liquid steel with different oxygen and sulphur content was simulated with a confocal scanning laser microscope combined with a special addition device. The inclusion formation and the inclusion interaction behavior immediately after the alloying and/or deoxidation were observed in situ. The inclusions were characterized based on both the in situ observation and the quenched sample. The effect of the sulphur and oxygen content in liquid iron, as well as that of the deoxidant type on the formation of oxides/oxysulfides is discussed taking consideration of the thermodynamics of the system. The inclusion behavior on the liquid iron surface, i.e., the interaction after its formation, the dissolution during the high temperature iso-thermal holding, and growth during the cooling was investigated. The dissolution of Mn(O,S) inclusions at 1843 K (1570 °C) was found to be driven by Mn diffusion through the inclusion/liquid iron boundary layer, and its growth during cooling was significantly affected by Marangoni flow.

Keywords

Liquid Iron Inductively Couple Plasma Atomic Emission Spectroscopy Inclusion Size Oxysulfide Inclusion Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Kiessling: Met. Sci., 1980, vol. 14, pp. 161-172.Google Scholar
  2. 2.
    M. Wakoh, T. Sawai, S. Mizoguchi: ISIJ Int., 1996, vol. 36, pp. 1014-1021.CrossRefGoogle Scholar
  3. 3.
    W.A. Spitzig: Metall. Trans. A, 1983, vol. 14, pp. 271-281.CrossRefGoogle Scholar
  4. 4.
    D. Zhang, H. Terasak,Y. Komizo: Acta Mater., 2010, vol. 58, pp. 1369-1378.CrossRefGoogle Scholar
  5. 5.
    V. Hays. R.L. Gall, G. Saindrenan and D. Roptin: Scripta Mater., 1998, vol. 38, pp. 391-398.CrossRefGoogle Scholar
  6. 6.
    H. Ohta, H. Suito: ISIJ Int., 2006, vol. 46, pp. 42-49.CrossRefGoogle Scholar
  7. 7.
    M. Wakoh, N. Sano: ISIJ Int., 2007, vol. 47, pp. 627-632.CrossRefGoogle Scholar
  8. 8.
    H. Yin, H. Shibata, T. Emi, M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 946-955.CrossRefGoogle Scholar
  9. 9.
    H. Yin, H. Shibata, T. Emi, M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936-945.CrossRefGoogle Scholar
  10. 10.
    K. Oikawa, S.L. Sumi, K. Ishida: J. Phase Equilib., 1999, vol. 20, pp. 215-223.CrossRefGoogle Scholar
  11. 11.
    N. Yuki, H. Shibata, T. Emi: ISIJ Int., 1998, vol. 38, pp. 317-323.CrossRefGoogle Scholar
  12. 12.
    S. Kimura, K. Nakajima, S. Mizoguchi, H. Hasegawa: Metall. Mater. Trans. A, 2002, vol. 33, pp. 427-436.CrossRefGoogle Scholar
  13. 13.
    H. Nakada, K. Nagata: ISIJ Int., 2006, vol. 46, pp. 441-449.CrossRefGoogle Scholar
  14. 14.
    H. Suito, H. Ohta: ISIJ Int., 2006, vol. 46, pp. 33-41.CrossRefGoogle Scholar
  15. 15.
    G. Li, H. Suito: ISIJ Int., 1997, vol. 37, pp. 762-769.CrossRefGoogle Scholar
  16. 16.
    K. Ogino, A. Adachi, K. Nogi: Tetsu-to-hagané, 1973, vol. 59, pp. 1237-1244.Google Scholar
  17. 17.
    K. Ogino, K. Nogi, Y. Koshida: Tetsu-to-hagané, 1973, vol. 59, pp. 1380-1387.Google Scholar
  18. 18.
    H. Gaye, L.D. Lucas, M. Olette, P.V. Riboud: Can. Metall. Quart., 1984, vol. 23, pp. 179-191.CrossRefGoogle Scholar
  19. 19.
    Y. Bottinga, D.F. Weill: Am. J. Sci., 1970, vol. 269, pp. 169-182.CrossRefGoogle Scholar
  20. 20.
    T. Nishizawa, I. Ohnuma, K. Ishida: J. Phase Equilib., 2001, vol. 22, pp. 269-275.CrossRefGoogle Scholar
  21. 21.
    D. R. Poirier, H. Yin, M. Suzuki, and T. Emi: ISIJ Int., 1998, vol. 38, pp. 229–238.CrossRefGoogle Scholar
  22. 22.
    O. Levenspiel, Chemical reaction engineering, 3rd ed., John Wiley & Sons, New York, 1999.Google Scholar
  23. 23.
    Y. Kawai, Y. Shiraishi, Hand book of physic-chemical properties at high temperature, ISIJ, Tokyo, 1988.Google Scholar
  24. 24.
    F.P. Calderon, N. Sano, Y. Matsushita: Metall. Trans., 1971, vol. 2, pp. 3325-3332.CrossRefGoogle Scholar
  25. 25.
    H. Yin, T. Emi: Metall. Mater. Trans. B, 2003, vol. 34, pp. 483-493.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2014

Authors and Affiliations

  1. 1.Department of Metallurgy and Materials Engineering (MTM)KU LeuvenLouvainBelgium

Personalised recommendations