Advertisement

Metallurgical and Materials Transactions B

, Volume 45, Issue 2, pp 617–628 | Cite as

Utilization of Coke Oven Gas and Converter Gas in the Direct Reduction of Lump Iron Ore

  • Elsayed Abdelhady MousaEmail author
  • Alexander Babich
  • Dieter Senk
Article

Abstract

The application of off-gases from the integrated steel plant for the direct reduction of lump iron ore could decrease not only the total production cost but also the energy consumption and CO2 emissions. The current study investigates the efficiency of reformed coke oven gas (RCOG), original coke oven gas (OCOG), and coke oven gas/basic oxygen furnace gas mixtures (RCOG/BOFG and OCOG/BOFG) in the direct reduction of lump iron ore. The results were compared to that of reformed natural gas (RNG), which is already applied in the commercial direct reduction processes. The reduction of lump ore was carried out at temperatures in the range of 1073 K to 1323 K (800 °C to 1050 °C) to simulate the reduction zone in direct reduction processes. Reflected light microscopy, scanning electron microscopy, and X-ray diffraction analysis were used to characterize the microstructure and the developed phases in the original and reduced lump iron ore. The rate-controlling mechanism of the reduced lump ore was predicted from the calculation of apparent activation energy and the examination of microstructure. At 1073 K to 1323 K (800 °C to 1050 °C), the reduction rate of lump ore was the highest in RCOG followed by OCOG. The reduction rate was found to decrease in the order RCOG > OCOG > RNG > OCOG-BOF > RCOG-BOFG at temperatures 1173 K to 1323 K (900 °C to 1050 °C). The developed fayalite (Fe2SiO4), which resulted from the reaction between wüstite and silica, had a significant effect on the reduction process. The reduction rate was increased as H2 content in the applied gas mixtures increased. The rate-determining step was mainly interfacial chemical reaction with limitation by gaseous diffusion at both initial (20 pct reduction) and moderate (60 pct reduction) stages of reduction. The solid-state diffusion mechanism affected the reduction rate only at moderate stages of reduction.

Keywords

Interfacial Chemical Reaction Apparent Activation Energy Metallic Iron Fayalite Direct Reduction Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Mr. Volodymyr Omelchenko for his cooperation and participation in the experiments of the current work. The authors gratefully acknowledge the financial support provided to the corresponding author of this research by Alexander von Humboldt Foundation in Germany.

References

  1. 1.
    A. Babich and D. Senk: The Coal Handbook: Towards Cleaner Production, vol. 2: Coal utilization, D. Osborne, ed., Woodhead Publishing Ltd., Oxford, Cambridge, Philadelphia, New Delhi, 2013, pp. 267–311.Google Scholar
  2. 2.
    J. Arvola, J. Harkonen, M. Mottonen, H. Haapasalo, and P. Tervonen: Low Carbon Econ., 2011, vol. 2, pp. 115-22.CrossRefGoogle Scholar
  3. 3.
    P. Diemer, K. Knop, H.B. Lüngen, M. Reinke, and C. Wuppermann: Stahl Eisen, 2007, vol. 127, pp. 19-24.Google Scholar
  4. 4.
    P. Diemer, H.-J. Killich, K. Knop, H.B. Lüngen, M. Reinke, and P. Schmöle: Proc., 2 nd International Meeting on Ironmaking/ 1 st International Symposium on Iron Ore, Vitoria, Espirito Santo, Brazil, 2004, pp. 1–14.Google Scholar
  5. 5.
    P. Diemer, H.B. Lüngen, and M. Reinke: Proc. METEC InSteelCon, ECIC, VDEh, Düsseldorf, Germany, 2011, Session 3, pp. 1–7.Google Scholar
  6. 6.
    K. Knop: Stahl Eisen, 2002, vol. 122, pp. 43-51.Google Scholar
  7. 7.
    R. Remus, M. Monsonet, S. Roudier, and L. Sancho: JRC Reference Report. http://www.eippcb.jrc.ec.europa.eu/reference/BREF/IS_Adopted_03_2012.pdf, 2013.
  8. 8.
    Coke Market Survey 2011: http://www.resource-net.com/files/Sample, Pages.pdf.
  9. 9.
    World Steel Association: Steel Statistical Yearbook 2012, Brussels, Belgium, 2012.Google Scholar
  10. 10.
    Z. Yang, Y. Zhang, X. Wang, Y. Zhang, X. Lu, and W. Ding: Energ. Fuel, 2010, vol. 24, pp. 785-88.CrossRefGoogle Scholar
  11. 11.
    I.G. Tovarovskii and A.E. Merkulov: Steel Transl., 2011, vol. 41, pp. 499-510.CrossRefGoogle Scholar
  12. 12.
    P. Hellberg, T.L.I. Jonsson, P.G. Jönsson, and D.Y Sheng: Proc., 4th international Conference on CFD in the Oil and Gas, Metallurgical and Process Industries SINTEF/NTNU, Trondheim, Norway, 2005, Session M-C, pp. 1–5.Google Scholar
  13. 13.
    E. Proface and S. Pivot: Proc., METEC InSteelCon, ECIC, VDEh, Düsseldorf, Germany, 2011, Session 3, pp. 1–7.Google Scholar
  14. 14.
    D. Andahazy, G. Löffler, F. Winter, C. Feilmayr, and T. Bürgler: ISIJ Int., 2005, vol. 45, pp. 166-74.CrossRefGoogle Scholar
  15. 15.
    S. Matsuzaki, K. Higuchi, A. Shinotake, and K. Saito: Proc. International Congress on the Science and Technology of Ironmaking (ICSTI), Rio de Janeiro, Brazil, 2012, pp. 977–83.Google Scholar
  16. 16.
    M.S. Chu, T.I. Guo, Z.G. Liu, X.X. Xue, and J.I. Yagi: Proc., International Congress on the Science and Technology of Ironmaking (ICSTI), Rio de Janeiro, Brazil, 2012, pp. 992–1004.Google Scholar
  17. 17.
    T. Miwa, H. Okuda, M. Osame, S. Watakabe, and K. Saito: Proc., METEC InSteelCon, ECIC, VDEh, Düsseldorf, Germany, 2011, Session 1, pp. 1–5.Google Scholar
  18. 18.
    A. Babich, D. Senk, H.W. Gudenau, and K.Th. Mavrommatis: Ironmaking Textbook, 1st ed., Wissenschaftsverlag Mainz, Aachen, Germany, 2008.Google Scholar
  19. 19.
    P.E. Kovalenko, A.P. Chebotarev, V.F. Pashinskii, V.M. Zamuruev, I.G. Tovarovskii, N.G. Boiko, V.S. Plevako, and B.S. Trunov: Metallurgy, 1989, vol. 9, pp. 22-23.Google Scholar
  20. 20.
    E.A. Mousa, A. Babich, and D. Senk: Steel Res. Int., 2013, vol. 84. DOI: 10.1002/srin.201200333.
  21. 21.
    R.G. Morales: Proc. 2nd Latin American Steel and Iron Ore Conference, Rio de Janeiro, Brazil, 2000, pp. 1–8.Google Scholar
  22. 22.
    M.H. Khedr and M.H. Abdel-Khalik: Fizykochemiczne Problemy Mineralurgii, 1996, vol. 30, pp. 135-44.Google Scholar
  23. 23.
    A.A. El-Geassy, M.I. Nasr, A.A. Omar, and E.A. Mousa: ISIJ Int., 2008, vol. 48, pp. 1359-67.CrossRefGoogle Scholar
  24. 24.
    A.A. El-Geassy, M.I. Nasr, and E.A. Mousa: Steel Res. Int., 2010, vol. 81, pp. 178-85.CrossRefGoogle Scholar
  25. 25.
    E.A. Mousa, D. Senk, and A. Babich: Steel Res. Int., 2010, vol. 81, pp. 706-715.CrossRefGoogle Scholar
  26. 26.
    E.A. Mousa, D. Senk, and A. Babich: Proc., METEC InSteelCon, ECIC, VDEh, Düsseldorf, Germany, 2011, Session 4, pp. 1–8.Google Scholar
  27. 27.
    S. Jasieńska, J. Orewezyk, A. Lędzki, and J. Durak: Solid State Ionics, 1999, vol. 117, pp. 129-43.CrossRefGoogle Scholar
  28. 28.
    A. Ghosh and A. Chatterjee: Ironmaking and Steelmaking Theory and Practice, PHI Learning Private Limited, New Delhi, India, 2008.Google Scholar
  29. 29.
    C.C. Massieon, A.H. Cutler, and F. Shadman: Ind. Eng. Chem. Res., 1993, vol. 32, pp. 1239-44.CrossRefGoogle Scholar
  30. 30.
    W.H. Kim, Y.S. Lee, I.K. Suh, and D.J. Min: ISIJ Int., 2012, vol. 52, pp. 1463-71.CrossRefGoogle Scholar
  31. 31.
    L.V. Bogdandy and H.J. Engell: The Reduction of Iron Ores, Springer Verlag, Düsseldorf, Germany, 1971.CrossRefGoogle Scholar
  32. 32.
    E.T. Turkdogan and J.V. Vinters: Metall. Trans., 1971, vol. 2B, pp. 3175-88.CrossRefGoogle Scholar
  33. 33.
    E.T. Turkdogan, R.G. Olsson, and J.V. Vinters: Metall. Trans., 1971, vol. 2B, pp. 3189-96.CrossRefGoogle Scholar
  34. 34.
    E.T. Turkdogan and J.V. Vinters: Metall. Trans, 1972, vol. 3B, pp. 1561-74.CrossRefGoogle Scholar
  35. 35.
    Y.S. Karabasol and V.M. Chizhikova: Physico-Chemistry of Iron Oxide Reduction from Iron Oxides (in Russian), Metallurgie, Moscow, Russia, 1986.Google Scholar
  36. 36.
    V.I. Zenkov and V.V. Pasichnyi: Powder Metall. Met. Ceram., 2010, vol. 49, pp. 231-37.CrossRefGoogle Scholar
  37. 37.
    D. Ghosh, A.K. Roy, and A. Ghosh: Trans. ISIJ, 1986, vol. 26, pp. 186-93.CrossRefGoogle Scholar
  38. 38.
    J.J. Spivey and T. Inui: Catalysis, 2002, vol. 16, pp. 133-54.CrossRefGoogle Scholar
  39. 39.
    J. Shen, Z.D. Liu, Z.Z. Wang, H.W. Yang, and R.S. Yao: Green Energy, 2008, vol. 5, pp. 413-21.CrossRefGoogle Scholar
  40. 40.
    W.H. Chen, M.R. Lin, A.B. Yu, S.W. Du, and T.S. Leu: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 11748-58.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2013

Authors and Affiliations

  • Elsayed Abdelhady Mousa
    • 1
    • 2
    Email author
  • Alexander Babich
    • 2
  • Dieter Senk
    • 2
  1. 1.Central Metallurgical Research and Development Institute (CMRDI)CairoEgypt
  2. 2.Department of Ferrous MetallurgyRWTH, Aachen UniversityAachen Germany

Personalised recommendations